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Abstract: Using exact solutions of Maxwell’s equations, we investigate
the evolution of the transversal profile of a surface plasmon polariton (SPP)
packet propagating along a planar interface between a dielectric and a lossy
metal. We introduce a parameter to measure the propagation length of the
SPP packet and analyze its behavior with respect to the shape of the packet
and the dielectric characteristics of the interface. Furthermore, we study
the polarization properties of the SPP packet and define two parameters to
quantify the fraction of the irradiance contained in the s- and p-polarization
components of the associated field. Our results help to advance in the
understanding of the SPP optics beyond the single-mode description.
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1. Introduction

Surface plasmon polaritons (SPPs) are electromagnetic modes supported by metal-dielectric
interfaces that originate from the collective oscillations of the conduction electrons of the metal
[1,2]. In the last years, SPPs have been a subject of extensive investigation due to their ability to
guide electromagnetic signals along the interface at visible and near-infrared frequencies, while,
at the same time, keeping them confined in small transversal regions [3,4]. These extraordinary
properties have been exploited in different applications including photonic interconnects [5–
9], ultrasensitive biosensors [10–13], or super-resolution near-field imaging [14–17], among
others.

However, in spite of the incredible amount of work on this topic, not much attention has
been paid to the characterization of SPP packets beyond the single-mode description. Indeed,
SPPs propagating in metal-dielectric interfaces are very often described using a single two-
dimensional plane wave [3, 5]. In this context, only recent works have started to analyze the
propagation of SPPs beyond the single mode description, establishing, for instance, interest-
ing connections between optics and plasmonics through the Fourier analysis of the plasmonic
modes and the Huygens-Fresnel principle [18, 19]. In addition to that, attention should be paid
when introducing any simplification in the underlying physical model, since this can often lead
to solutions that are no longer admissible, as it has been recently pointed out [20–23].

In this work, we use exact solutions of Maxwell’s equations to analyze the evolution of the
transversal profile of a SSP packet that propagates along a flat interface separating a dielectric
and a lossy metal. In order to do so, we define three different parameters; the first provides
information about the propagation length of the SSP packet, whereas the other two serve to
characterize the polarization properties of the packet by quantifying the fraction of the irra-
diance contained within the s- and p-polarization components of the associated field. As an
illustrative example, we compute these parameters for the case of a Gaussian SPP packet. Inter-
estingly, we find results that are appreciably different from those that would be obtained using
a single-mode description. The paper is organized as follows. In the following section we intro-
duce the theoretical framework. In Section 3, we define the propagation length of a SSP packet
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Fig. 1. Schematics of the system under study. We consider a planar interface between a
dielectric and a lossy metal placed perpendicularly to the z-axis.

and we analyze its behavior with respect to the shape of the packet and the dielectric properties
of the materials of the interface. Section 4 is devoted to analyze the polarization characteristics
of the SPP packet. Finally, the main conclusions are summarized in Section 5.

2. Theoretical framework

We start considering an electromagnetic wave of frequency ω propagating at a planar interface
between two homogeneous, nonmagnetic media, placed perpendicularly to the z-axis as shown
in Fig. 1. The region z < 0 corresponds to a metallic material and therefore is characterized
by a complex dielectric function εc with Re{εc} < 0 and Im{εc} > 0, whereas in the half-
space z > 0 the dielectric function εd is real and positive. The two dielectric functions satisfy
εd +Re{εc} < 0. Furthermore, we work in a region where no sources for the field are present
[23]. Under these conditions, the electric field in medium j = d,c can be written as

E(r,u) = E0, j(u)eir·k j(u),

where r = (x,y,z) is the position, k j = (k jx,k jy,k jz) is the wave vector, and u is a real variable.
We seek rigorous surface-bound solutions of Maxwell’s equations representing wave fields that
decay away from the interface on both sides. Taken into account the corresponding boundary
conditions, it can be shown that the components of the wave vector and the electric field in both
media are given by

k j(u) =
(

kx(u) ,
√

Re
{

k2
sp
}

u,k jz

)
,

and

E0 j(u) =

kx(u)
ksp

,

√
Re
{

k2
sp
}

u

ksp
,−

ksp

k jz

 ,

respectively. In these expressions, ksp is the SPP wave number, which is defined as k2
sp =

(ω/c)2
εcεd/(εc + εd), while k2

dz = k2
spεd/εc and k2

cz = k2
spεc/εd are the wave vector compo-

nents along the z-axis in the dielectric and the metal, respectively [21–23]. As discussed in
the Appendix, this is not the most general expression for the wave vector of a SPP. How-
ever, it corresponds to the SPP propagating along the x-axis with the smallest attenuation in
the propagation plane (xy-plane, see Fig. 1). Using these expressions, the x-component satisfies
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k2
x(u) = k2

sp−Re
{

k2
sp
}

u2. When u = 0 we recover the well-known single-mode solution [3,21].
In a general case, these exact solutions represent inhomogeneous waves in both media, and
therefore it is not possible to have a pure surface wave at the interface between a real metal and
a dielectric. Nevertheless, as is pointed out in references [20–23], the square modulus of the
electric field decays exponentially along the z-axis in both media. The penetration distance, d j
is independent of u and reads d j = 1/Im

{
k jz
}

[21–23]. In a similar way, the propagation length,
x0, of the SSP along the interface is determined by Im{kx(u)} and reads x0 = 1/(2Im{kx(u)}).

As it is the case for free-propagating photons, a description based on a single SPP mode
constitutes a first approximation to a real situation. In most of the experimentally relevant cases,
SPP are generated in packets. Focusing on the field at the interface E(x,y,0) = Esp(x,y), we
can construct a SSP packet as follows

Esp(x,y) =
∫

∞

−∞

duF(u)E0 j(u)eixkx(u)eiy
√

Re{k2
sp}u

, (1)

where F(u) is an arbitrary square integrable function and, for simplicity, we assume x ≥ 0.
From the expression above we infer that the shape of F(u) plays a crucial role in the behavior
and the polarization properties of the SSP packet. Taking into account the definition of kx(u),
the SSP packet given in Eq. (1) can be understood as a superposition of inhomogeneous two-
dimensional waves that decay at different rates along de x-axis. In this sense Eq. (1) is analogous
to the evanescent component of the angular plane-wave spectrum formalism of optical fields
[24, 25]. As an example of a SPP packet, in Fig. 2 we plot the squared modulus of Esp(x,y) for
a silver-vacuum interface when F(u) corresponds to a Gaussian function

F(u) =
e−(u/a)2

a
√

π
, (2)

where a is the parameter that controls the width of F(u). The upper panel of Fig. 2 stands for
the case with a = 0.05, the middle one corresponds to a = 0.1, and the lower one to a = 0.1.
In all cases we assume a vacuum wavelength λ = 633nm, which results in a dielectric function
for silver εc = −18.36+ i0.48 [26]. As a increases, more components are added to the SPP
packet, which results in a less collimated packet that diverges faster.

3. Propagation length of SPP packets

In this section we focus on analyzing the propagation length of a SSP packet. In order to do
so, we generalize the aforementioned propagation length of a single-mode SSP to a packet by
defining the parameter x̄0 as follows

x̄0 =

∫
∞

0 dxIsp(x)x∫
∞

0 dxIsp(x)
,

where Isp(x) =
∫

∞

−∞
dy
∣∣Esp(x,y)

∣∣2. From a physical point of view x̄0 determines the interval,

(0,4x̄0), in which more than 75% of
∣∣Esp(x,y)

∣∣2 is confined [25,27]. Taking into account Eq. (1)
and Parseval’s identity, we can rewrite the propagation length x̄0 as

x̄0 =

∫
∞

−∞
du |E0d(u)F(u)|2 /Im2 {kx(u)}

2
∫

∞

−∞
du |E0d(u)F(u)|2 /Im{kx(u)}

. (3)

It is clear from the this expression that the value of x̄0 is determined by the dielectric properties
of the interface and by the shape of F(u). Interestingly, the rate x̄0/dd can be used as a figure
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Fig. 2. Square modulus of the SPP packet field, Esp(x,y) for a silver-vacuum interface. We
assume a Gaussian packet, i.e. F(u) given by Eq. (2), with three different values of a: 0.05
(upper panel), 0.1 (middle panel), and 0.2 (lower panel). In all cases we choose a vacuum
wavelength λ = 633nm.

of merit describing the confinement and propagation properties of SSP packet, similarly to the
figure of merit introduced in [9].

When F(u) is peaked around u = 0 (i.e. in the paraxial limit) we can expand the integrands of
Eq. (3) up to second order in u and obtain a more handy expression for the propagation length,
namely

x̄0 =
1

2Im
{

ksp
} 1− 〈u

2〉0Re{k2
sp}

(1+γ)|k2
sp|

(
γ +

Re{k2
sp}

|k2
sp|

)
1− 〈u

2〉0Re{k2
sp}

(1+γ)|k2
sp|

(
γ−1

2 +
Re{k2

sp}
|k2

sp|

) , (4)

where

〈u2〉0 =
∫

∞

−∞
du |F(u)|2 u2∫

∞

−∞
du |F(u)|2

,

and γ = |εc|/εd . Examining Eq. (4), we observe that, for a given interface, the propagation
length of a paraxial SPP packet corresponds to the propagation length of a single-mode SPP
modulated by a function that decreases when parameter 〈u2〉0 increases. Since this parameter
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Fig. 3. Propagation length, x̄0, for a Gaussian SPP packet (see Eq. (2)) propagating along
an interface between silver and a dielectric medium with dielectric function εd . Panel (a)
shows x̄0 plotted as a function of a (solid curves) for three different values of εd : 1 (upper
panel), 2 (middle panel), and 4 (lower panel). The dashed lines in these plots represent the
propagation length for a single-mode SPP, x0 = 1/

(
2Im

{
ksp
})

. Panel (b) shows x̄0 plotted
as a function of εd for three different values of a: 0.1 (green curve), 1 (blue curve), and 2
(red curve). In all cases the vacuum wavelength λ is 633nm.

can be understood as a measure of the width of F(u), we conclude that broad SPP packets
are associated with smaller propagation lengths. This result is illustrated in Fig. 3(a), where
we plot x̄0 normalized to the vacuum wavelength λ = 633nm for a Gaussian SSP packet (see
Eq. (2)) as a function of a (solid curves). Notice that for a Gaussian SPP packet 〈u2〉0 = a2/4.
We consider a silver-dielectric interface with three different values of εd : 1 (upper panel), 2
(middle panel), and 4 (lower panel). Comparing the propagation length of the SPP packet with
that of a single-mode SPP, x0 = 1/

(
2Im

{
ksp
})

, which is plotted in Fig. 3(a) using dashed lines,
we notice that x̄0 can take appreciably smaller values than x0 for large values of a. The reason
is that SPP packets with larger values of a contain a larger set of wave vectors. This means
that they are more localized spatially but also that they are more affected by diffraction, which
leads to shorter propagation lengths. On the other hand, Fig. 3(b) shows x̄0 as a function of εd .
In this case, we study three different Gaussian SSP packets with a = 0.1 (green curve), a = 1
(blue curve), and a = 2 (red curve). From the results shown in this figure, it is evident that the
propagation length decreases when εd increases. The reason for this behavior is associated with
the larger penetration of the field into the metal due to the reduction on the contrast between the
dielectric functions of the metal and the dielectric material. This increases the Ohmic losses,
thus resulting in a smaller propagation length. Similar results are obtained for other values of
the Gaussian packet width a.

4. Parametric characterization of the polarization properties

The polarization properties of a SPP packet are not trivial. Indeed, analyzing Eq. (1) we observe
that each mode involved in the superposition has a well defined polarization, and therefore
the polarization of the entire SSP packet depends on the shape of F(u). For the particular
case F(u) = δ (u) we recover the well-known p-polarized single-mode SPP [3]. However, in
a general case we have a nonuniform polarized field. In order to characterize the polarization
properties of a SSP packet, we introduce the parameters ρp(x,y) and ρs(x,y), which represent
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Fig. 4. Fraction of the irradiance contained in the p-component of the field of a Gaus-
sian SPP packet, ρp(x,y), with a = 1 propagating on a silver-vacuum interface. (b) Square
modulus of the field for the packet of panel (a). In both cases the vacuum wavelength is
λ = 633nm.

the percentage of local irradiance associated to the p- and the s-polarization components at each
point of the interface. These parameters are defined as

ρσ (x,y) =

∣∣Esp,σ (x,y)
∣∣2∣∣Esp(x,y)
∣∣2 , (5)

where σ = p,s, and Esp,σ (x,y) refer to the σ -polarization component of the SSP packet field. It
should be noted that we define the p and s-polarization components with respect to the xz-plane
(see Fig. 1), in analogy with the case of the single-mode SPP. As expected, both ρp(x,y) and
ρs(x,y) range from 0 to 1 and satisfy the relation ρp(x,y)+ρs(x,y) = 1. Thus, in practice, it is
only necessary to study one of them.

We explore the behavior of ρp(x,y) in Fig. 4(a) for the case of silver-vacuum interface with
F(u) given in Eq. (2), a= 1, and a vacuum wavelength of 633nm. For our choice of parameters,
the irradiance of the SPP packet is mainly concentrated in the p-component. However, compar-
ing this figure with Fig. 4(b), where the square modulus of the analyzed SPP packet field is
plotted, we notice that ρp(x,y) only quantifies the local p-polarization content and, therefore,
it does not contain any information of the irradiance. This puts in evidence the necessity of a
global evaluation of the p- and s-polarization content of a SSP packet, which can be achieved
by averaging the expression given in Eq. (5) along the y-axis using the SPP packet irradiance.
To this end, we define the global parameters ρ̃p(x) and ρ̃s(x) as follows

ρ̃σ (x) =
∫

∞

−∞
dyρσ (x,y)

∣∣Esp(x,y)
∣∣2∫

∞

−∞
dy
∣∣Esp(x,y)

∣∣2 , (6)
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with σ = p,s. Again, these parameters range from 0 to 1, and satisfy the relation ρ̃p(x)+ ρ̃s(x)=
1. They allow us to analyze the evolution of the polarization of the SPP packet as it propagates
along the interface. If we restrict ourselves to functions F(u) very peaked around u = 0 (i.e. in
the paraxial limit), we can approximate the right term of Eq. (6) and obtain a simpler expression
for ρ̃p(x), namely

ρ̃p(x) = 1−
Re
{

k2
sp
}
〈u2〉(x)∣∣k2

sp
∣∣(1+ γ)+

2Re{k2
sp}〈u2〉(x)Im2{ksp}
|k2

sp|

, (7)

where

〈u2〉(x) =

∫
∞

−∞
du |F(u)|2 u2exp

[
− xu2Re{k2

sp}Im{ksp}
|k2

sp|

]
∫

∞

−∞
du |F(u)|2 exp

[
− xu2Re{k2

sp}Im{ksp}
|k2

sp|

] .

Incidentally, while a pure surface wave mode preserves its p-polarization, from Eq. (7) we
conclude that the percentage of s-polarization of a SSP packet depends on the propagation
length, the shape of the function F(u), and the dielectric properties of the interface. Figure 5(a)
shows the value of ρ̃p(x) for a Gaussian SSP packet (see Eq. (2)) propagating along a metal-
dielectric interface, calculated for different values of a and εd , and plotted as a function of x/x̄0.
From the results shown in this figure we observe that for a = 0.1 (dashed curves) the value of
ρ̃p(x) is almost equal to one for the two values of εd , and remains constant during the analyzed
propagation range. Interestingly, Gaussian SPP packets with larger values of a can present a
remarkable global s-polarization content. This is the case for a = 2 (solid curves), for which
ρ̃p(x) starts around 0.86 (0.95) for εd = 4 (εd = 1), and increases as the packet propagates,
eventually reaching a constant value closer to 1. On the other hand, in Fig. 5(b) we plot ρ̃p(x)
as a function of the ratio between the dielectric functions of the dielectric medium and silver,
εd/ |Re{εc}|. We consider two different positions: x = 0 (green curves) and x = 0.3x̄0 (red
curves) and two different values of a: 0.1 (dashed curves, right scale) and 2 (solid curves, left
scale). We observe that, for all cases under consideration, there is a value of εd/ |Re{εc}| for
which ρ̃p(x) reaches a minimum. Since, ksp depends on that ratio, we expect this behavior to
hold for Gaussian SPP packets propagating on any planar metal-dielectric interface.

5. Conclusion

In summary, we have investigated the evolution of the transversal profile of a SPP packet propa-
gating along a planar metal-dielectric interface. We have introduced a parameter to quantify the
propagation length of the SPP packet and we have analyzed the behavior of this quantity for the
case of a Gaussian SPP packet with respect to its shape and the dielectric properties of the inter-
face. We have found that the propagation length of the packet can be appreciably smaller than
that of a single-mode SPP. We have also studied the polarization properties of the SPP packet
by introducing two parameters that measure the relative irradiance content associated with the
p and s-components of the corresponding field. Using these parameters, we have analyzed the
evolution of the polarization for Gaussian SPP packets propagating on interfaces with differ-
ent dielectric properties. Interestingly, although a single-mode SPP involves only p-polarized
fields, we have found that SPP packets can present a remarkable s-polarization content. Further-
more, we have found that for any Gaussian packet, there is a ratio of the dielectric functions of
the materials that form the interface for which the fraction of the irradiance associated to the s-
polarization component reaches a maximum value. The results presented here serve to advance
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Fig. 5. Global fraction of the irradiance contained in the p-component of the field, ρ̃p(x),
for a Gaussian SPP packet propagating along a metal-dielectric interface. Panel (a) shows
ρ̃p(x) plotted as a function of the position x normalized to the propagation length x̄0. We
consider two values of a: 0.1 (dashed curves), and 2 (solid curves), and two different εd : 1
(green curves), and 4 (red curves). Panel (b) shows ρ̃p(x) as a function of the ratio between
the dielectric functions of silver and the dielectric medium, εd/ |Re{εc}|. We consider two
different positions: x = 0 (green curves) and x = 0.3x̄0 (red curves) and two different values
of a: 0.1 (dashed curves, right scale) and 2 (solid curves, left scale). In all cases the vacuum
wavelength is λ = 633nm.
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in the understanding of the SPP optics beyond the single-mode description, and therefore may
enable the development of new applications in plasmonics.
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Appendix: SPP wave vector

The electric field associated with a SPP of frequency ω that propagates along a planar interface
can be written as

E j(r) = E0 jeir·k j ,

where j = d,c stands for the dielectric and the metal, respectively. In order to satisfy Maxwell’s
equations and the appropriate boundary conditions, the SPP wave vector k j needs to be of the
form

k j = (kx,ky,k jz) ,

and fulfill the constraint

k2
x + k2

y = k2
sp.

Under these conditions E0 j is given by

E0 j =

(
kx

ksp
,

ky

ksp
,−

ksp

k jz

)
.

In these expressions, k2
sp = (ω/c)2

εdεc/(εd + εc) and k2
jz = ε j (ω/c)2− k2

sp. Therefore, in the
most general case we can write the SPP wave vector as

k2
x = k2

sp−u2Re
{

k2
sp
}
− iv2Im

{
k2

sp
}
,

k2
y = u2Re

{
k2

sp
}
+ iv2Im

{
k2

sp
}
,

where u and v are real variables. In this work, we have chosen v = 0, which corresponds to
the SPP propagating along the x-axis with the smallest attenuation in the propagation plane
(xy-plane, see Fig 1).
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