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Instituto de Óptica - CSIC and Unidad Asociada CSIC-Universidade de Vigo, Serrano 121,
28006 Madrid, Spain
∗ jga@cfmac.csic.es

Abstract: We investigate the coupling of gap plasmons in various
configurations of neighboring metallic nanowires. Starting with the basic
element defining a gap plasmon, consisting of two neighboring silver
wires, we study the energy splitting and symmetry properties of hybridized
plasmons resulting from the interaction of two wire pairs. The system is
shown to display non-avoided crossings of hybridized modes, and it evolves
at short distances towards a degenerate system consisting of four wires
arranged in a square, where two new gap plasmons emerge from redshifted
higher-energy modes. The gap modes of three neighboring wires are also
described in a continuous transition from a coplanar configuration to an
equilateral triangle arrangement. The interaction between wire pairs is
shown to be weak enough to prevent efficient transfer of plasmon signal
from a pair to the other one, which is beneficial to avoid crosstalking, but
not to produce waveguide couplers. The coupling is significantly increased
by placing a wire of rectangular cross section in between the wire pairs, thus
allowing us to achieve large plasmon-signal transfers within propagation
distances below the attenuation length. Our results can find application in
the design of signal-processing devices based upon gap plasmons.

© 2009 Optical Society of America

OCIS codes: (250.5403) Plasmonics; (240.6680) Surface plasmons; (230.7370) Waveguides.

References and links
1. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric

structures,” Phys. Rev. B 61, 10484–10503 (2000).
2. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric

structures,” Phys. Rev. B 63, 125417 (2001).
3. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
4. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leit-

ner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic
nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).

5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection
of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat.
Mater. 2, 229–232 (2003).

6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength
waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).

7. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martı́n-Moreno, and F. J. Garcı́a-Vidal, “Guiding and focusing
of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).

8. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt.
Lett. 30, 3359–3361 (2005).

9. A. Manjavacas and F. J. Garcı́a de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,”
Nano Lett. 9, 1285–1289 (2009).

#116060 - $15.00 USD Received 24 Aug 2009; revised 23 Sep 2009; accepted 24 Sep 2009; published 12 Oct 2009

(C) 2009 OSA 26 October 2009 / Vol. 17,  No. 22 / OPTICS EXPRESS  19401



10. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-
wavelength confinement and long-range propagation,” Nat. Phot. 2, 496–500 (2008).

11. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: A compar-
ison of latency, crosstalk and energy costs,” Opt. Express 15, 4474–4484 (2007).

12. G. Veronis and S. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16,
2129–2140 (2008).

13. F. J. Garcı́a de Abajo, A. Rivacoba, N. Zabala, and P. M. Echenique, “Electron energy loss spectroscopy as a
probe of two-dimensional photonic crystals,” Phys. Rev. B 68, 205105 (2003).

14. F. J. Garcı́a de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous di-
electrics,” Phys. Rev. B 65, 115418 (2002).

15. F. J. Garcı́a de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss
spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).

16. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
17. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
18. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, Oxford, 1981).
19. I. N. Levine, Molecular Spectroscopy (Wiley-Interscience, London, 1975).
20. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides - I: Summary of results,” IEEE

Trans. Microwave Theory Tech. 23, 421–429 (1975).
21. P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides - II: Theory,” IEEE Trans.

Microwave Theory Tech. 23, 429–433 (1975).

1. Introduction

Collective excitations of conduction electrons near metal surfaces can mix with electromagnetic
fields to produce surface plasmon polaritons, which are capable of propagating over hundreds
of microns along metal surfaces [1, 2]. These excitations are however confined to the surface
and penetrate inside the metal only a few tens of nanometers (the skin depth [3]). In planar
metal-dielectric interfaces, plasmons extend towards the dielectric over a significant fraction of
a micron at visible and near-infrared frequencies, but this spreading can be limited by conve-
niently shaping the interface, so that the overall extension of the mode in the plane perpendic-
ular to the propagation direction is reduced to just a few nanometers in average radius. These
properties make surface plasmons very attractive as carriers of information that can be highly
packed in space. Several designs have been proposed to this end, including particle chains [4, 5]
and plasmons propagating along grooves [6], wedges [7], gaps between metals [8, 9], and met-
allodielectric structures [10]. Among these, the modes defined in the gap between two metal
wires have been shown to be particularly robust against sharp turnings and wire imperfections,
and they allow optimum three-dimensional integration with minimum crosstalk [9]. Actually,
crosstalking is a limiting factor in the achievable degree of integration, with dramatic effects in
single wires [11], but it is largely reduced in gap plasmons [12].

In this paper, we explore the hybridization of gap plasmons in aligned metal wires. In particu-
lar, we study the interaction between the gap modes of two neighboring wire-pairs as a function
of the spacing between them. The interaction of gap modes in a system formed by three wires is
also investigated. We conclude with a proposal of a gap-mode coupler consisting of an interme-
diate rectangular wire that can produce large transfer of the gap mode from a given wire pair to
a neighboring one. We obtain the dispersion relation of gap modes by examining the photonic
density of states (DOS), which is derived from the solution of Maxwell’s equations for an ar-
bitrary number of circular wires using two-dimensional multiple elastic scattering of multipole
expansions (2D-MESME) of the field around the cylinders [13]. We also look into the photonic
local density of states (LDOS) using a boundary element method (BEM) for translationally
invariant (but otherwise arbitrary) geometries [14] (see Appendix). The LDOS is defined by
analogy to its electronic counterpart as the combined local intensity of all eigenmodes of the
system under investigation, and it takes the value ω2ε1/2/3π2c3 in a homogeneous medium of
permittivity ε when projected along any spatial direction. In fact, we decompose this quantity
into the contribution of different wavevectors q along the direction of translational symmetry
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z. For example, in a homogeneous medium, the q-resolved LDOS projected along z reduces to
(ω/2πc2)(1−q2/q2

ε)θ(qε −q), where qε = ωε1/2/c [15]. The q-resolved DOS is the integral
of the LDOS over the remaining x− y directions. Our BEM requires 200 points per wire in
order to achieve convergence within the scale of the plots; the computation time scales with the
cube of the number of cylinders and it takes less than a minute for each value of (q,ω) in a
wire-pair system using an ordinary workstation. Regarding the 2D-MESME method, we have
achieved convergence by including multipoles with azimuthal quantum numbers up to m = 20,
and each value of (q,ω) takes less than a second for a system formed by two wires.

2. Interaction between gap plasmons

The basic element defining a gap plasmon is the wire pair depicted in Fig. 1(a). In what fol-
lows, we focus on silver wires of circular cross section and 200 nm in diameter embedded in a
silica matrix. The silver [16] and silica [17] are described by their measured complex dielectric
functions. The plasmon modes of this system are unveiled in the dispersion diagram of Fig.
1(c), which shows the photonic DOS as a function of photon energy h̄ω and momentum h̄q
along the wires, encompassing a dependence on time t and propagation distance z given by
exp[i(qz−ωt)]. The guided modes of the wire pair lie outside the light cone of the embedding
silica, and one of them is clearly isolated from the rest, with significantly larger values of q that
make it more confined [9]. This so-called gap plasmon is bound to the gap region between the
wires, as shown in the inset of Fig. 1(c).

The interaction between wire pairs placed at a distance b [see Fig. 1(b)] is investigated in
Fig. 2. At large distances, the interaction between gap modes is weak and results in a small
energy splitting that increases as b becomes smaller [see Fig. 2(a)]. This is accompanied by
a significant redshift in two of the higher-energy modes. Eventually the splitting of the two
gap modes decreases with decreasing b, presumably as a result of mode repulsion triggered by
the approaching higher-energy modes, at there is even a non-avoided mode crossing, which is
clearly resolved in the zoomed inset of Fig. 2(a).

It is surprising to see that the gap modes undergo such a non-avoided crossing, since it is clear
that they interact with each other even at relatively large distances within the range considered
in Fig. 2. That is, their interaction is allowed by symmetry, but they still cross each other. The
reason for this is that the interaction becomes zero exactly at the point of crossing, thus averting
the typical avoided-crossing behavior described in quantum chemistry textbooks [18]. This is
actually a feature associated to the interaction between line dipoles in two dimensions. Unlike
the interaction between point dipoles, which is described in free space by the non-vanishing
complex dipole field, line dipoles can have vanishing interaction. This is illustrated by the
electric field created under the conditions of Fig. 3, where we represent the field due to a line
dipole of the form eiqz ŷ, placed in a homogeneous medium of permittivity ε and with the line
oriented along z. The electric field at points along the x axis takes the form

E(Rx̂) = 2

[
k2K0(ΓR)− Γ

εR
K1(ΓR)

]
eiqz ŷ, (1)

where k = 2π/λ is the light wavevector in free space, Γ =
√

q2− εk2, and K0 and K1 are
modified Bessel functions. The interaction is thus real (for q > ε1/2k outside the light cone
of the medium), except for a trivial plane wave dependence on z, and it contains a node at
a distance R = 306nm from the z axis for λ = 1605nm. The center-to-center distance at the
crossing point in the wires of Fig. 2 is 213 nm. This is qualitatively consistent with the line-
dipole model (Fig. 3), which is an idealization of the field produced by a gap mode.

The orientation of the electric field in the gap regions of two interacting wire-pairs is
schematically represented in Fig. 2(b). A detailed account of the derivation of these schemes
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Fig. 1. Gap plasmon modes for one and two wire-pairs. (a)-(b) Schematic view of the
geometry. (c)-(d) Photonic density of states (DOS) as a function of energy and momentum
parallel to the wires for one and two wire-pairs. The inter-wire gap distance is d = 10nm in
both cases and the distance b between the two wire-pairs in (d) is 10 nm. The insets show
the spatial distribution of the local density of states (LDOS) for the lowest-energy gap mode
at a free-space light wavelength of 1550 nm. Brighter regions correspond to higher DOS
and LDOS values.

is given in the Appendix. At large distances, a characteristic binding-antibinding interplay is
displayed (panels 4 and 5). Incidentally, parallel dipoles (panel 5) give rise to binding (lower
energy), although this behavior is reversed at small distances due to the sign change noted in
Eq. (1) and Fig. 3.

An interesting situation is presented when the distance between all wires is the same
[b = d = 10nm in Fig. 1(d) and Fig. 2], so that there are four hybridized gap modes. In the
evolution of different modes when two wire-pairs are brought together into this configuration
[Fig. 2(a)], we find that one of the higher-order modes is dramatically redshifted to become
degenerate with a short-distance antibinding mode [panel 2 of Fig. 2(b)].The binding mode
[panel 1] involves electric fields of adjacent gaps facing each other. The remaining fourth mode
is provided by another redshifted higher-order mode, and displays closed electric-field lines,
which make it more strongly confined. For completeness, the dispersion diagram of this de-
generate system is given in Fig. 1(d), showing three gap-mode lines that are clearly separated
from the upper-energy structure: a central line corresponding to the two degenerate modes of
panel 2 in Fig. 2(b), flanked by two non-degenerate lines [upper and lower lines in Fig. 1(d),
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Fig. 2. (a) Evolution of the modes in two wire-pairs as a function of the distance between
them for fixed q = 10 μm−1. The inset shows a zoom of the low-energy mode-crossing
region. (b) Orientation of the electric field in the gap regions for two limiting geometries:
(1-3) square symmetry (b = d = 10nm) and (4,5) rectangular symmetry (b� d = 10nm).
The numerical labels correspond to the modes signalled by arrows in (a). The symmetry
increase in the square configuration leads to mode degeneracy, as shown in (3).
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Fig. 3. Spatial dependence of field produced by a line dipole. (a) Line of dipoles eiqz ŷ
distributed along the z axis. (b) y component of the electric field produced by the dipoles of
(a) along the x axis for a free-space wavelength λ = 1605nm and q = 10 μm−1, with the
dipoles embedded in silica (ε = 2.08).

corresponding to the modes of panels 3 and 1 in Fig. 2(b), respectively]. This mode structure
can be qualitatively described by considering the interaction of nearest-neighbors gap-plasmons
described by a coupling energy Δ and leading to the interaction matrix

⎡
⎢⎢⎣

0 Δ 0 Δ
Δ 0 Δ 0
0 Δ 0 Δ
Δ 0 Δ 0

⎤
⎥⎥⎦ ,

which has two degenerate eigenstates (0,−1,0,1) and (−1,0,1,0) at the same energy as the
single wire-pair [these are the modes of panel 2 in Fig. 2(b)], a state (−1,1,−1,1) shifted
by −2Δ (panel 3), and another state (1,1,1,1) shifted by 2Δ (panel 1, implying that Δ < 0).
Notice that the two degenerate eigenstates (0,−1,0,1) and (−1,0,1,0) form a basis of the
2-dimensional irreducible representation E of the point group C4v, which characterizes the cou-
pled square structure. In the same way, the other two eigenstates (−1,1,−1,1) and (1,1,1,1)
form a basis of the 1-dimensional irreducible representations B2 and A2, respectively [19]. This
means that each of those eigenstates is transformed under the symmetry operations, as each
irreducible representation indicates. It should be mentioned that a systematic analysis of the
modes of systems with square symmetry leads to six types of modes (two degenerate ones and
four non-degenerate) [20, 21], but here we are concerned only with modes that are a combina-
tion of gap modes, and therefore, this restriction limits our number of states to just four. The
coordinates in the vectors stand for the electric field in consecutive gaps of the structure (e.g.,
−1 and 1 correspond to clockwise and counterclockwise orientations of the field, respectively).
Whereas this model predicts a symmetric disposition of the upper- and lower-energy gap states
relative to the unperturbed state, the (−1,1,−1,1) state undergoes much larger shift than the
(1,1,1,1) state in the actual structure [Fig. 2(a)], which we attribute to interaction with higher
other states, although the effect of second-neighbor interaction cannot be ruled out. Incidentally,
this type of interaction does not change the symmetry of the states.

The hybridization of gap modes in a wire trimer is studied in Fig. 4. Starting from a coplanar
configuration (i.e., a trimer angle of 180◦), the interaction increases as the angle spanned by the
two gaps is reduced, thus leading to further splitting between the energies of the two resulting
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hybridized modes. Interestingly, the splitting reaches a maximum at an angle of ∼ 70◦, and it
drops to zero in the 3-fold symmetric trimer (angle= 60◦). A higher-order mode is redshifted
with decreasing trimer angle, and becomes the third mode of the symmetric trimer. The degen-
eracy of two of the three gap modes is needed by symmetry in this case, as deduced from the
interaction matrix ⎡

⎣ 0 Δ′ Δ′
Δ′ 0 Δ′
Δ′ Δ′ 0

⎤
⎦ ,

where Δ′ represents the inter-mode coupling. This matrix has two degenerate eigenmodes,
(1,0,−1) and (−1,1,0), with energy shift −Δ′ and a symmetric mode, (1,1,1), shifted by
2Δ′. These states form a basis of the irreducible representations E (2-dimensional) and A2 (1-
dimensional) of the point group C3v, which characterizes the 3-fold-symmetric trimer-structure.
They are in full agreement with the orientation of the electric field at the gaps of the symmetric
trimer (see left insets in Fig. 4 and also the Appendix), although the relative energy shift is
larger for the symmetric mode in the actual structure, presumably as a result of interaction with
higher-energy modes. Again, the restriction that the hybridized modes are made of gap modes
limits their number to just three, rather than the four states predicted by general symmetry
theory for structures with triangular symmetry [20, 21].

3. A gap plasmon coupler

The coupling between gap modes in the two wire-pairs of Fig. 1(b) is relatively weak according
to Fig. 2(a), except at very small distances b. The crosstalk between gap plasmons is then small,
also implying that it will be difficult to realize a plasmon coupler capable of transferring a
plasmon signal from a given wire-pair to a neighboring one (see below). We intend however
to design a plasmon coupler for wire pairs, that is an important element in eventual plasmonic
circuits for implementing simple logical elements such as splitters and interferometers [6].

We need to estimate how much of the signal propagating in a gap-plasmon mode is trans-
ferred to another neighboring gap plasmon over a certain propagation distance. Following Ref.
[12], we note that for symmetric systems such as those considered above there exist (for any
given fixed frequency) two hybridized gap modes that are symmetric and antisymmetric with
respect to the center of the combined structure. We can write them as

Es(r) = es(x,y)eiqsz,

Ea(r) = ea(x,y)eiqaz,

where qs and qa are the corresponding wavevectors along the direction of the wires. These two
modes can be expressed as symmetric and antisymmetric combinations of the gap modes of
each wire pair (1 and 2) as

es =
1√
2

[e1 + e2] ,

ea =
1√
2

[e1− e2] .

Now, we can prepare a signal that is propagating in a combined state

E(r) =
1√
2

[
eiqszes(x,y)+ eiqazea(x,y)

]

=
1
2

(
eiqsz + eiqaz

)
e1(x,y)+

1
2

(
eiqsz− eiqaz

)
e2(x,y).
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Fig. 4. Gap modes in a wire trimer. (a)-(c) Photonic density of states (DOS) as a function
of energy and momentum parallel to the wires for three different trimer-angles. The insets
show the spatial distribution of the local density of states (LDOS) for the lowest-energy
gap mode at a free-space light wavelength of 1550 nm. (d) Evolution of the gap modes with
the trimer angle for fixed q = 10 μm−1. The insets show the orientation of the electric field
in the gap regions for equilateral and coplanar trimers. Two of the modes are degenerate
in the 3-fold symmetric case (angle= 60◦). The inter-wire gap distance is d = 10nm in all
cases.

#116060 - $15.00 USD Received 24 Aug 2009; revised 23 Sep 2009; accepted 24 Sep 2009; published 12 Oct 2009

(C) 2009 OSA 26 October 2009 / Vol. 17,  No. 22 / OPTICS EXPRESS  19408



This state is initially propagating in the gap mode 1 at z = 0 (the coefficient of state e2 vanishes
at that point). The fraction of power T (L) that is transferred to mode 2 after propagation over a
distance L is given by the squared modulus of the coefficient multiplying e2 [12]:

T (L) =
1
4

∣∣∣eiqsL− eiqaL
∣∣∣2 . (2)

If we neglect absorption, qs and qa are real, so that Eq. (2) reduces to

T (L) = sin2 [(qs−qa)L/2] ,

which is an oscillatory function of L predicting full transfer from gap 1 to gap 2 after a propa-
gation distance L = π/|qs−qa|. However, absorption introduces a small imaginary part in the
wavevectors, leading to attenuated oscillations.

We represent in Fig. 5(b) a representative case of the fraction of transferred power T (L)
between two wire-pairs (dashed curve), given by Eq. (2) for the values of qs and qa obtained
from BEM with b = 20nm and λ = 1550nm. The maximum transferred-power fraction is
only Tmax = 35.6%. The remaining power is lost to absorption before full transfer between gap
modes can be realized. This coupling scheme is thus of no practical use because absorption
dominates over power transfer. In order to increase the coupling efficiency, we have placed a
structure in between the wire pairs [see Fig. 5(a)], leading to a larger maximum transferred-
power fraction Tmax = 74.3%, as shown by the solid curve of Fig. 5(b). This geometry is not
fully optimized, but it shows that by placing a structure in between the waveguides, one can
increase crosstalking to achieve a significant degree of power transfer. This type of coupler can
find practical application in waveguide splitters, interferometers, and other signal processing
elements.

4. Conclusion

In summary, we have shown that the interaction of gap plasmons confined to wire-pairs leads
to a complex structure of hybridized modes, including non-avoided crossings facilitated by the
vanishing of the interaction right at the point of crossing. We find that the coupling between wire
pairs is not strong enough to allow complete transfer of plasmon signal between pairs within
a propagation distance well below the attenuation length (it reaches a transfer fraction of 35%
for short distances, but it is generally lower; this is a consequence of the robustness of these
gap plasmons against undesired crosstalking [9]). As an alternative, we have presented a design
of a more efficient plasmon coupler containing an additional intermediate wire and capable of
transferring 74% of the signal between wires. This illustrates the advantage of adding such an
additional wire, although we have not tried to optimized the geometry to achieve the maximum
possible transfer rate. Optimization of geometrical parameters should allow achieving larger
transfer fractions for application to signal-processing elements such as waveguide splitters,
energy filters, and interferometers.

Appendix: Calculation of LDOS and plasmon-mode spatial profiles

The photonic eigenmodes of a system fully characterize its optical response. Their wave func-
tions correspond to the electric fields E j, which satisfies Maxwell’s equations,

∇×∇×E j(r)−
ω2

j

c2 ε(r)E j(r) = 0. (3)
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Fig. 5. Waveguide coupler consisting of an intermediate wire of rectangular cross section
placed between the two gap-plasmon waveguides. (a) Schematic view of the geometry. (b)
Fraction of power transferred between waveguides as a function of coupler length along the
wires (solid curve). For comparison, we show the power transfer in two wire-pairs without
intermediate coupler (dashed curve) for a distance b = 20nm. The transversal dimensions
of the coupler are 140nm×20nm. The four circular wires are arranged as in Fig. 1(b) with
d = 10nm and b = 20nm.
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The Green function of these equations also captures the optical properties of the system. The
Green function is implicitly defined by

∇×∇×←→G (r,r′,ω)− ω2

c2 ε(r)
←→
G (r,r′,ω) =

−←→I
c2 δ (r− r′), (4)

where
←→
I is the 3×3 unit tensor. This permits writing the electric field produced by any current

distribution j(r,ω) as

E(r,ω) =−4πiω
∫

dr′
←→
G (r,r′,ω) · j(r′,ω). (5)

The Green function can be expressed in terms of the eigenmodes as

←→
G (r,r′,ω) = ∑

j

E j(r)⊗E∗j(r′)
ω2−ω2

j + iγ
, γ → 0+. (6)

We can easily check that this is a solution of Eq. (4) by using Eq. (3), and by conveniently
normalizing the wave functions, so that ε(r)∑ j E j(r)⊗E∗j(r′) =

←→
I δ (r− r′).

The photonic LDOS projected along some direction n̂, and defined as the combined projected
local intensity of all eigenmodes for a given frequency ω , reads

LDOS(r,ω) = ∑
j

∣∣E j(r) · n̂
∣∣2 δ (ω−ω j).

This quantity can be also expressed in terms of the Green function as [15]

LDOS(r,ω) =
−2ω

π
Im

{
n̂ ·←→G (r,r,ω) · n̂

}
,

as deduced upon inspection of Eq. (6).
Noticing that a dipole of unit strength n̂ located at r0 is equivalent to a current density
−iωn̂δ (r− r0), and inserting this into Eq. (5), the LDOS is obtained from the resulting field,
evaluated at the position of the dipole:

LDOS(r0,ω) =
ω2ε1/2

3π2c3 +
1

2π2ω
Im

{
n̂ ·Eref(r0,ω)

}
, (7)

where we have separated the divergent direct dipole field to yield the LDOS in a homogeneous
medium (first term in this equation), so that the remaining second term results from reflection
of the dipole field at the boundaries of the structure under consideration. We use Eq. (7) in this
paper to obtain the LDOS from the reflected field produced by a dipole.

For a frequency ω near a non-degenerate mode ω j, the electric field can be approximated,
according to Eqs. (5) and (6), as

E(r,ω)≈ A(ω)E j(rb),

where

A(ω) =
−2πi

ε
1

ω−ω j + iγ

∫
dr′ E j(r′) · j(r′,ω)

is a multiplicative constant. For degenerate modes, we can still recover the electric field for
a single mode by choosing a current density j with the appropriate symmetry. We have used

#116060 - $15.00 USD Received 24 Aug 2009; revised 23 Sep 2009; accepted 24 Sep 2009; published 12 Oct 2009

(C) 2009 OSA 26 October 2009 / Vol. 17,  No. 22 / OPTICS EXPRESS  19411



Mode 3Mode 1 Mode 2

x-
co

m
po

ne
nt

y-
co

m
po

ne
nt

(a)  Squared geometry

x-
co

m
po

ne
nt

y-
co

m
po

ne
nt

Mode 1 Mode 2

(b)  Rectangular  geometry1

-1

0

Fig. 6. Electric field for the modes of the symmetric 4-wire structure of Fig. 1(b) with
b = d = 10nm. The light wavelength is λ = 1000nm in all cases. Mode labels 1-3 are in
correspondence with those of Fig. 2(b).

this properties to find the field distributions of some of the modes considered in this paper. For
example, Figs. 6 and 7 show the electric field distributions for modes of a 4-fold symmetric
structure and trimers, respectively. The arrows of the insets in Figs. 2 and 4 have been derived
from Figs. 6 and 7. The above analysis must be slightly modified in the case of wires in order
to decompose the field and the LDOS in terms of contributions arising from different q compo-
nents [15]. In particular, the field distributions of Figs. 6 and 7 are constructed from the induced
field for values of ω and q corresponding to the targeted mode, and with the external current j
representing a dipole located at one of the gaps and oriented to be compatible with excitation
of that mode.
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Fig. 7. Electric field for the modes of various trimer structures. The gap distance is d =
10nm and the light wavelength is λ = 1000nm in all cases.
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