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Abstract: The overall spatial structure of a general partially coherent field 
is shown to be connected with the cross-correlation between the so-called 
spiral modes, understood as the terms of the spiral-harmonics series 
expansion of the field. The formalism based on the beam irradiance-
moments is used, and the light field is globally described by the beam 
width, the far-field divergence, the beam quality factor, the orientation of 
the beam profile and the angular orbital momentum, given as the sum of its 
asymmetrical and vortex parts. This overall spatial description is expressed 
in terms of the intermodal coherence features (cross-correlation between 
spiral modes). The above analytical results are also illustrated by means of 
an example. 
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1. Introduction 

As is well known, the field amplitude ( , )E r θ  of a (spatially coherent) beam at a plane 

transverse to the propagation direction z, can be expanded in terms of spiral harmonics in the 
form [1,2] 

 ( , ) ( ) exp( ),
n

n

E r E r inθ θ=∑   (1) 

where r and θ denote the polar coordinates at a transverse plane (say z = 0), and 
( )exp( )

n
E r inθ  represents the so-called n-spiral mode associated to ( , )E r θ , with 

 
2

0

1
( ) ( , )exp( ) .

2nE r E r in d

π

θ θ θ
π

= −∫   (2) 

When light becomes a partially spatially coherent field, the functions ( , )E r θ and ( )
n

E r  

should be considered stochastic processes. Consequently, Eq. (1) and (2) should then be 
understood in the mean-square sense. Expansion (1) is closely related with the so-called 
orbital angular momentum (OAM) spectrum, introduced some years ago by Molina-Terriza et 
al. [3] (see also Refs [4,5].): Note first that the OAM concerns the spatial structure of the 
phase distribution of the field. In particular, Allen at al [6,7]. showed that the OAM takes the 
value lℏ  per photon for a beam whose phase term is exp( )ilθ , where l denotes the azimuthal 

number. The OAM spectrum is then generated by the relative powers of the OAM eigenstates, 
i.e., of the spiral harmonics with different azimuthal numbers. 

Apart from the analytical interest for describing optical vortex beams [8–11], the OAM 
offers a number of potential applications, such as those related with optical communications 
(e.g., quantum information processing [12], and high-density date transmission [13]). 

In the present work, attention will be focused on the cross-correlation between different 
spiral modes (i.e., their intermodal coherence features). Since light beams exhibit, in general, 
complicated and irregular spatial structures, a suitable analytical instrument for their overall 
description and study is the so-called irradiance-moments formalism [14–20]. In this 
treatment, the spatial structure of a partially coherent field is globally described (within the 
paraxial approach) by means of a number of measurable overall parameters. On this basis, it 
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will be shown in the present work the analytical relationship between the above beam 
parameters and the intermodal coherence behavior. 

The paper will then be arranged as follows. In the next section, the formalism and the key 
parameters and definitions are introduced. In Section 3, in terms of the cross-correlation 
between spiral modes, we provide the focusing characteristics at the near- and far-field, the 
beam quality parameter, the orientation of the beam profile under propagation, and the orbital 
angular momentum, written as the sum of its asymmetrical and vortex parts [11,21,22]. An 
illustrative example is discussed in Section 4. Finally, the main conclusions are summarized 
in Section 5. 

2. Basic formalism and key definitions 

Let us consider a quasimonochromatic (scalar) partially coherent beam, whose overall spatial 
behavior is described by means of the beam irradiance moments [14–20] (denoted by sharp 
brackets). As is well known, they can be defined in terms of the Wigner distribution function 
[23], h(r,η,z), associated to the field, in the form 

 
1

 ( , , )d d ,m n p q m n p q
x y u v x y u v h z

I
< >≡ ∫ r η r η   (3) 

where m, n, p and q are integer numbers, r = (x, y) is the two-dimensional position vector 
transverse to the propagation direction z, kη = (ku, kv) = (kx, ky) provides the wavevector 
components along the x- and y-axes (u and v would represent angles of propagation, without 

taking the evanescent waves into account), I hd d= ∫ r η  is proportional to the total beam 

power, and 

 ( , , ) ( , ) exp( ) ,h z W ik d= ⋅∫r η r s η s s   (4) 

W being the cross-spectral density (CSD) of the field. Since the four first-order moments, 
<x>, <y>, <u> and <v>, characterize the centre of the beam and its mean direction, in what 
follows we assume, for simplicity, that these moments vanish. The (squared) beam width at a 
plane z = constant and the (squared) far-field divergence are then represented by <x

2 + y2> and 
<u

2 + v2>, respectively, and the crossed moment <xu + yv> gives the position of the beam 
waist through the condition <xu + yv> = 0. 

In addition, the spatial orientation of the irradiance profile is characterized [20,24,25] by 
the orientation of two orthogonal axes (the so-called principal axes) for which the crossed x-y 
moment vanishes, i.e., <xy> = 0. It follows that the beam widths <x

2>1/2 and <y
2>1/2 reach their 

extreme values along these axes. Since, in general, the spatial profile rotates as the field 
propagates in free space, the principal axes are useful to describe such rotation. More 
specifically, the angle α between the principal axes and the laboratory reference axes follows 
the propagation law [25] 

 
2

2 2 2 2 2

2 2 ( ) 2
tan 2 ( ) ,

2 ( ) ( )

xy z xv yu z uv
z

x y z xu yv z u v
α

< > + < > + < > + < >
=
< > − < > + < > − < > + < > − < >

  (5) 

z being the propagation distance from the plane where these moments are calculated. 
Finally, the orbital angular momentum flux

z
J , transported by the beam through a 

transverse plane z = constant, can be expressed in terms of the irradiance moments in the form 
[20] 

 ( ),
z

I
J xv yu

c
= < − >   (6) 
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where c is the speed of light. Note that 
z

J  vanishes for rotationally-symmetric Hermite-Gauss 

beams, but it differs from zero for twisted Gaussian fields [26–28]. It should be pointed out 
that the OAM can be decomposed in two parts [21,22], namely, the asymmetrical OAM, 
denoted by ( )a

z
J (describing an astigmatic beam with a smooth wavefront), and the vortex 

OAM, represented by ( )v

z
J (involving singularities of the wavefront). In terms of the irradiance 

moments, we have 

 ( )( ) 2 2
2 2

1
2 ,a

z

I
J x y xv yu xy yv xu

c x y

 
= < − >< + > + < >< − > < + > 

  (7.a) 

and 

 ( ) ( ) .v a

z z z
J J J= −  (7.b) 

Note also that the “beam rotation velocity” 
d

dz

α
(where α is given by Eq. (5)) is connected 

with ( )a

z
J (cf. Equation (25) of Ref. 22). 

All the above second-order parametric characterization can be condensed in the following 
set of four 2 × 2 matrices, recently introduced in the literature [25]: 

 
2 2

(0)

2 2
ˆ ,

x y xu yv
M

xu yv u v

 < + > < + >
=  

< + > < + > 
  (8.a) 

 
2 2

(1)

2 2
ˆ ,

x y xu yv
M

xu yv u v

 < − > < − >
=  

< − > < − > 
  (8.b) 

 (2) 2ˆ ,
2

xy xv yu
M

xv yu uv

< > < + > 
=  < + > < > 

  (8.c) 

 (3) 0ˆ .
0

xv yu
M

yu xv

< − > 
=  < − > 

  (8.d) 

We see from the definitions that the near- and far-field spatial behavior can be inferred 

from the diagonal elements of (0)
M̂ . Furthermore, the non-diagonal elements give the 

position of the waist plane and the determinant of (0)
M̂ defines the beam quality parameter 

[20], which provides a joint description of the focusing and collimation capabilities of the 
light beam. 

On the other hand, matrices (1)
M̂ and (2)

M̂  include all the second-order parameters 
required to know the orientation of the beam profile freely propagating as well as the 
symmetry properties. They also include complete information to determine the asymmetrical 

OAM. Finally, matrix (3)
M̂  gives the OAM of the beam: in fact, (3)ˆdet M  is proportional to 

2( )
z

J . 

It should be noted that matrices ( )ˆ i
M , i = 0, 1, 2, 3, propagate through stigmatic optical 

systems according with the simple law [25] 

 ( ) ( )ˆ ˆˆ ˆ( ) ( ) ,i i t

output input
M S M S=   (9) 
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where Ŝ  is the 2 × 2 ABCD matrix representing the system, and t means transposition. Let us 

finally recall that 
3

( )

0

ˆdet i

i

M
=
∑ remains invariant upon propagation through general ABCD 

optical systems [25]. 

3. Relation between the intermodal coherence and the second-order (overall) spatial 

characterization 

The spiral-mode expansion (1) allows us to express the CSD of the field in the form 

 *
1 1 2 2 1 2 1 2

,

( , , , ) ( ) ( ) exp( )exp( ),n m

n m

W r r E r E r in imθ θ θ θ= −∑   (10) 

where the asterisk means complex conjugation, and the overbar symbolizes an average over 
an ensemble of field realizations. But Eq. (10) can also be written in the form 

 1 1 2 2 1 1 2 2
,

( , , , ) ( , , , ),nm

n m

W r r W r rθ θ θ θ=∑   (11) 

where 

 *
1 2 1 2( ) ( )exp( ) exp( ).

nm n m
W E r E r in imθ θ= −   (12) 

The terms of the series that appears in Eq. (11) can then be thought of as the cross-
correlations between spiral modes, i.e., they provide, for ,n m≠  the intermodal coherence 
features. 

In this sense, after lengthy and careful calculations, it can be shown that matrices ( )ˆ i
M , i = 

0,1,2,3, can be expressed as follows 

 (0) (0)ˆ ˆ ,
nn

n

M M=∑   (13.a) 

 (1) (1)
1 1

ˆ ˆ ,
n n

n

M M − +=∑   (13.b) 

 (2) (2)
1 1

ˆ ˆ ,
n n

n

M M − +=∑   (13.c) 

 (3) (3)ˆ ˆ ,
nn

n

M M=∑   (13.d) 

where 

 
2(0) 2

11
0

2ˆ ,nn nM r E rdr
I

π ∞

 = ∫   (14.a) 

 
2

2 2(0) '
2 222

0

2ˆ ,
nn n n

n
M E E rdr

k I r

π ∞   = +   
∫   (14.b) 

 { }(0) (0) ' *

12 21
0

2ˆ ˆ Im ,nn nn n nM M r E E rdr
kI

π ∞

 = =  ∫   (14.c) 

 { }(1) 2 *
1 1 1 1

11
0

2ˆ Re ,n n n nM r E E rdr
I

π ∞

− + + −
 = ∫   (14.d) 
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(1)
1 1

22

2
' * ' * ' * ' *

1 1 1 1 1 1 1 12 2
0

ˆ

2 1 1 1
Re ( ) ( ) ( ) ,

n n

n n n n n n n n

M

n n n
E E E E E E E E rdr

r rk I r

π

− +

∞

+ − + − + − − +

 =

 − − +
= − − + 

 
∫

 (14.e) 

 (1) (1) ' * *
1 1 1 1 1 1 1 1

12 21
0

2 1ˆ ˆ Im ,n n n n n n n n

n
M M r E E E E rdr

kI r

π ∞

− + − + + − + −

+  = = +    ∫   (14.f) 

 { }(2) 2 *
1 1 1 1

11
0

2ˆ Im ,n n n nM r E E rdr
I

π ∞

− + + −
 = ∫   (14.g) 

 

(2)
1 1

22

2
' * ' * ' * ' *

1 1 1 1 1 1 1 12 2
0

ˆ

2 1 1 1
Im ( ) ( ) ( ) ,

n n

n n n n n n n n

M

n n n
E E E E E E E E rdr

r rk I r

π

− +

∞

+ − + − + − − +

 =

 − − +
= − − − 

 
∫

(14.h) 

 (2) (2) ' * *
1 1 1 1 1 1 1 1

12 21
0

2 1ˆ ˆ Re ( ) ,n n n n n n n n

n
M M r E E E E rdr

kI r

π ∞

− + − + + − + −

+  = = +    ∫   (14.i) 

 (3) (3)

11 22

ˆ ˆ 0,
nn nn

M M = =    (14.j) 

 
2(3) (3)

12 21
0

2ˆ ˆ Re .nn nn n

n
M M r E rdr

kI r

π ∞
  = − =     ∫   (14.k) 

In these expressions, En was defined in Eq. (2), the prime indicates derivation with respect 

to r, and here
2

0 0
( , ; , )I W r r rdrd

π
θ θ θ

∞
= ∫ ∫ . 

As is apparent from Eqs. (13), the matrices (0)ˆ
nn

M  and (3)ˆ
nn

M  play a similar role as matrices 
(0)

M̂ and (3)
M̂ but now calculated for the functions 

nn
W , which can be understood as the CSD 

associated to each separate spiral mode. With regard to matrices (1)
1 1

ˆ
n n

M − +  and (2)
1 1

ˆ
n n

M − + , they 

exhibit an analogous structure to (1)
M̂  and (2)

M̂ , but their elements are now computed from 
the functions 1 1n n

W − +  (see Eq. (12)), which involve intermodal cross-correlations. 

Taking all this into account, a number of direct consequences follow for general partially 
coherent beams: 

i) The focusing properties in the near- and far-field (beam width, divergence and waist-

plane position, given by the elements of (0)
M̂ ) do not depend on the intermodal 

coherence. 

ii) Accordingly, the beam quality parameter is also independent of any cross-correlation 
between spiral modes that constitutes the field. 

iii) The intermodal coherence has no influence on the z-component of the orbital angular 
momentum,

z
J . In other words, different cross-correlation between spiral modes can 

give rise to the same value of
z

J . 

iv) The orientation of the profile of a freely-propagating beam and the asymmetrical 

OAM, ( )a

z
J (both contained in matrices (1)

M̂ and (2)
M̂ ) depend on the cross-

correlation between pairs of spiral modes separated by two orders (n + 1 and n-1). 
When such a cross-correlation does not exist, the spatial profile does not rotate upon 
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free propagation, even though the rest of intermodal correlations differ from zero. In 
addition, ( ) 0a

z
J = . 

v) The vortex part, ( )v

z
J , of the OAM also depends of the intermodal coherence of the pair 

of modes n-1, n + 1. Property iii indicates, however, that such cross-correlation has 
no influence on the sum ( ) ( )a v

z z z
J J J+ = . 

4. Example 

To illustrate the above general conclusions, let us now consider a light field represented by the 
following stochastic process at some transverse plane: 

 [ ]( , ) ( ) exp( ) exp( ) exp( ) ,E r f r in i iθ θ α θ β θ= − +   (15) 

where ( )f r is real, and α and β denote random variables. Equation (15) means that the field 

( , )E r θ should be considered as a superposition of the two spiral modes n-1 and n + 1 in the 

expansion (1). We have chosen this example because it allows illustrating the behavior in the 
general case. As a matter of fact, this field contains two spiral modes, separated by two orders. 
This enables us to handle, in a simple way, the intermodal coherence features (ranging from 
incoherence to complete coherence) through the random variables α and β. In addition, the 
spatial profile of the beam can be shaped by fixing a particular function f(r). 

For the above field, the irradiance reads 

 { }2 2 2 *( , ) ( ) 2 Re exp( 2 ,I r f r iθ α β αβ θ = + + −  
  (16) 

and we also have <x> = <y> = <u> = <v> = 0. Let us now choose a (transverse) coordinate 

system with respect to which { }*Im 0αβ = . Note that this choice can always be done. The 

irradiance then becomes 

 ( )2 2 2( , ) ( ) (1 cos 2 ),I r f rθ α β σ θ= + + Ψ   (17) 

where 

 

( )
*

1/2
2 2

,
αβ

σ
α β

=   (18.a) 

 
( )

1/ 2
2 2

2 2

2  
.

α β

α β
Ψ =

+
  (18.b) 

It follows at once that 

 0 1.σ≤ ≤   (19) 

The value 1σ =  implies a coherent superposition of the two spiral modes, whereas 

0σ = means that the modes should be considered as incoherent (mutually uncorrelated). An 

intermediate value 0 1σ< < would correspond to a partially coherent superposition. 

On the other hand, it can be shown that 

 0 1.≤ Ψ ≤   (20) 
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The factor Ψ depends on the relative weight of the spiral modes that contributes to the 

stochastic field. It reaches its maximum value Ψ = 1 when 2 2α β= . 

In the present example, the matrices ( )ˆ i
M , i = 0, 1, 2, 3, calculated at the transverse plane 

where the field is given by Eq. (15), take the form 

 
2

(0)

2

0ˆ ,
0 (1 2 cos 2 )

r
M

n nξ γ ρ

 < >
=  

+ + + 
  (21.a) 

 
2

(1)

2

0ˆ ,
2 0 (1 )

r
M

n

σ
ξ ρ

 < >Ψ
=  

+ − 
  (21.b) 

 (2)

0
ˆ ,

2
0

n

k
M

n

k

σ
 
 Ψ
 =
 
 
 

  (21.c) 

 (3)

1
0 ( cos 2 )

ˆ ,
1

( cos 2 ) 0

n
k

M

n
k

γ

γ

 + 
 =
 − + 
 

  (21.d) 

where 

 

2 2
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Taking the above expressions into account, we get the following overall spatial behavior: 

i) Incoherent case (σ = 0) 

- The beam is rotationally symmetric, and both the beam quality parameter 
and the specific value of the OAM depend on the relative weight of the 
spiral modes, for a given n. 
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- The asymmetrical OAM, ( )a

z
J , vanishes. In other words, the OAM only 

involves the vortex part. 

ii) Partially coherent case ( 0σ ≠ ) 

- The beam is not rotationally symmetric, and ( )a

z
J  differs from zero. In 

fact, 

 ( ) ,
2

a

z

I n
J

c k

σΨ =  
 

  (23.a) 

and 

 ( )1
cos 2 .

z

I
J n

c k
γ= +   (23.b) 

We see that ( )a

z
J  is maximum when σ = 1 (coherent case) and Ψ = 1 (same 

weight of the spiral modes). Also note that ( )a

z
J  = 0 for n = 0. 

- The spatial profile of this beam rotates upon free propagation, and its 
rotation is independent of σ and Ψ (it depends on n and f(r)). To 
characterize such rotation, we can apply Eq. (5). 

Figures 1-3 illustrate the transverse structure of the irradiance profile ( , )I r θ for the special 

case 

 
1 2

2
( ) exp .

2

n
r r

f r
w w

+   = −  
   

  (24) 

In accordance with the analytical results, we see from the figures that the beam shape 
exhibits a rotationally-symmetric structure when the spiral modes are uncorrelated (σ = 0). 
Otherwise, the profile shows the appearance of two lobes, which becomes more pronounced 
for higher values of the product σΨ. 

Finally, Fig. 4 shows the rotation of the beam profile in terms of the propagation distance 
z, for several values of n. In this case, the evolution of the angle α, given by Eq. (5), reduces to 
the formula 

 
2

2
2

2
tan 2 ( ) .

( 2) (2 )

nz
z

z
kw n n

kw

α =
+ + −

  (25) 

Note first that, for n = 0, the irradiance profile does not rotate, as it should be expected. In 
addition, a nearly asympthotic behavior of the curves plotted in Fig. 4 is observed for 
distances longer than, say, 30 cm from the initial plane. Note also that the numerical value 

2 2kw  would be the Rayleigh length associated to a coherent Gaussian beam, w being the 

beam width at its waist plane. For the values chosen in Fig. 4, 2 2 1.6cmkw ≈ . It should be 

remarked, however, that, for partially coherent light, the Rayleigh length 
R

z  associated to the 

set of beams defined by Eq. (24) depends on n as well as on the relative weight between 
modes, and the resulting expression for

R
z would become more involved. 
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Fig. 1. Transverse distribution (pseudo-coloured) proportional to the irradiance profile of the 
field considered in the example analysed in Section 4 (cf. Equations (17) and (24)), for the 
values w = 100λ, λ = 0.5 µm, σΨ = 0. As usual, the horizontal and vertical directions 
correspond to the x- and y-axis, respectively. The length of the side of each square is 4w. 

 

Fig. 2. The same as in Fig. 1 but now with σΨ = 0.5. 

 

Fig. 3. The same as in Fig. 1 but now with σΨ = 1. 
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Fig. 4. Rotation angle α of the beam profile upon free propagation, for the example considered 
in Section 4. 

5. Conclusions 

The so-called spiral modes associated to a partially coherent beam can be understood as the 
terms of the spiral-harmonics expansion of the field. It is then meaningful to write the CSD as 
a series whose terms provide the cross-correlations between spiral modes (in short, their 
intermodal coherence features). Several relations have been derived between certain spiral-
content characteristics and the spatial beam structure. In particular, it has been concluded that 
the OAM,

z
J , the beam quality parameter and the focusing properties at the near- and far-field 

do not depend on the intermodal coherence. On the contrary, the orientation of the beam 
profile and both the asymmetrical and the vortex parts, ( )a

z
J and ( )v

z
J , of the OAM depend on 

the cross-correlation between pair of modes separated by two orders, namely, n + 1 and n-1. 
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