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Nanoscale transfer of angular momentum
mediated by the Casimir torque
Stephen Sanders1, Wilton J.M. Kort-Kamp2, Diego A.R. Dalvit3 & Alejandro Manjavacas 1

Casimir interactions play an important role in the dynamics of nanoscale objects. Here, we

investigate the noncontact transfer of angular momentum at the nanoscale through the

analysis of the Casimir torque acting on a chain of rotating nanoparticles. We show that this

interaction, which arises from the vacuum and thermal fluctuations of the electromagnetic

field, enables an efficient transfer of angular momentum between the elements of the chain.

Working within the framework of fluctuational electrodynamics, we derive analytical

expressions for the Casimir torque acting on each nanoparticle in the chain, which we use to

study the synchronization of chains with different geometries and to predict unexpected

dynamics, including a “rattleback”-like behavior. Our results provide insights into the Casimir

torque and how it can be exploited to achieve efficient noncontact transfer of angular

momentum at the nanoscale, and therefore have important implications for the control and

manipulation of nanomechanical devices.
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It is well established that light carries angular momentum1. The
simplest evidence of this phenomenon is the possibility of
spinning nanostructures by illuminating them with circularly

polarized light2,3. The angular momentum of light is also mani-
fested in Casimir interactions4 that originate from the vacuum
and thermal fluctuations of the electromagnetic field5,6. For
instance, two parallel plates made of birefringent materials with
in-plane optical anisotropy have been shown to experience a
Casimir torque that rotates them to a configuration in which the
two optical axes are aligned7–11. A similar phenomenon is pre-
dicted to occur for two nanostructured plates12, or for a nanorod
placed above a birefringent plate13.

Vacuum and thermal fluctuations also produce friction on
rotating nanostructures; for instance, it has been predicted that a
nanoparticle rotating in vacuum experiences a Casimir torque
that slows its angular velocity and eventually stops it14,15. A
similar effect is also expected for a rotating pair of atoms16. The
Casimir torque can be enhanced by placing the particle near a
substrate17,18, which also leads to a lateral Casimir force19,20, or
by using materials with magneto-optical response21. The origin of
this torque can be found in the imbalance of the absorption and
emission of left-handed and right-handed photons caused by the
rotation of the particle. Although Casimir interactions produce
friction and stiction that affect the dynamics of nanomechanical
devices22, they also offer new opportunities for the noncontact
transfer of momentum; for example, if a rotating nanostructure is
placed near another structure, the Casimir torque that slows the
first one down will necessarily accelerate the other one23–31.

In this paper, we investigate the noncontact transfer of angular
momentum at the nanoscale by analyzing the Casimir torque
acting on a chain of rotating nanoparticles, which contains an
arbitrary number of elements. This system can be thought of as a
Casimir analog to a chain of particles rotating in a viscous
medium, whose motion is coupled through a drag force. We
obtain analytical expressions describing the Casimir torque and
exploit them to study the free rotational dynamics of chains with
different geometries. We show that the synchronization of the
angular velocities of the particles can happen in timescales as
short as seconds for realistic structures. Furthermore, we predict
exotic behaviors in chains with inhomogeneous particle sizes and
separations, including “rattleback”-like dynamics32,33, in which
the sense of rotation of a particle changes several times before
synchronization, as well as configurations for which angular
momentum is never transferred to a selected particle in the chain.
We analyze, as well, the steady-state distribution of angular
velocities in chains in which one or multiple particles are exter-
nally driven at a constant angular velocity. The results of this
work show that the Casimir torque provides a mechanism for the
efficient transfer of angular momentum between nanoscale
objects without requiring them to be in contact.

Results
Theoretical model. The system under study is depicted in Fig. 1.
It consists of a chain of N spherical nanoparticles with diameters
Di separated by center-to-center distances dij. Each nanoparticle
can rotate with an angular velocity Ωi around the axis of the

chain, which we choose as the z-axis. We assume that the size of
the particles is much smaller than the relevant wavelengths of the
problem, which are determined by the temperature, the material
properties, and the angular velocities of the particles, and con-
sider geometries obeying dij ! 3

2maxðDi;DjÞ. This allows us to
model each particle as a point electric dipole with a frequency-
dependent polarizability αi(ω). Within this approximation, the
Casimir torque acting on particle i can be written as
Mi ¼ hpi ´Eii %bz34, where the brackets stand for the average over
vacuum and thermal fluctuations, while pi and Ei are, respec-
tively, the self-consistent dipole and field at particle i, which
originate from: (i) the fluctuations of the dipole moment of each
particle pflj and (ii) the fluctuations of the field Efl

j . Then, solving
pi and Ei in terms of pflj and Efl

j and taking the average over
fluctuations using the fluctuation–dissipation theorem35–37, one
can write the Casimir torque as Mi ¼ Mþ

i 'M'
i , where M ±

i is
given by (see the “Methods” section for the detailed derivation)

M ±
i ¼ ' 2!h

π

Z

0

1
dω
XN

j¼1

Γ0 ±j δij þ Γ±
ij

h i
njðω

(
j Þ ' n0ðωÞ

h i
:

Here, ω±
i ¼ ω±Ωi and ni(ω)= [exp(ℏω/kBTi)−1]−1 is the

Bose–Einstein distribution at temperature Ti, with T0 being the
temperature of the surrounding environment. Furthermore,
Γ0 ±i ¼ 2ω3

3c3 Re 2A±
ii ' 1

! "
χ ±
i ðωÞ corresponds to the contribution

to the Casimir torque produced by the environment, while

Γ±
ij ¼ δijIm S±

ii

! "
χ ±
i ðωÞ ' S±

ij

###
###
2
χ ±
i ðωÞχ

±
j ðωÞ

is the contribution arising from the particle–particle interaction.
Physically, the first of these contributions corresponds to the
exchange of angular momentum between each particle and the
environment, while the second one is associated with the exchange
of angular momentum between the particles. In these expressions,
A±
ij are the components of the N ×N matrix A± ¼ I ' α±G½ *'1,

where α± is a diagonal matrix whose components are the effective
polarizabilities of the particles α±

eff ;iðωÞ as seen from the frame at
rest, G is the dipole–dipole interaction matrix with components
Gij ¼ ð1' δijÞexpðikdijÞ½ðkdijÞ

2 þ ikdij ' 1*=d3ij, and k=ω/c is

the wave number. Furthermore, χ ±
i ðωÞ ¼ Im α±

eff ;iðωÞ
n o

'
2
3 k

3 α±
eff ;iðωÞ

###
###
2

and S±
ij ¼

PN
m¼1A

±
miGmj (see the “Methods”

section). We want to remark that our results include radiative
corrections, which are crucial to correctly describe the contribu-
tions to the torque produced by the environment38. It is also
important to notice that the Casimir torque described here is a
dissipative effect, and therefore it depends strongly on the
temperature of the particles and the environment.

The calculation of the effective polarizability α±
eff ;iðωÞ is subtle. In

the past, this quantity has been computed assuming that the
intrinsic response of the system was independent of the rotation,
which resulted in an effective polarizability α±

eff ;iðωÞ ¼ αiðω
(
i Þ that

only accounted for the Doppler-shift produced by the
rotation14,15,17,19,28,39–41. However, recently21,42, it has been
pointed out that the inclusion of the Coriolis and centrifugal effects
gives rise to corrections that, for the case of spherical particles,
cancel the effect of the Doppler-shift and introduce a dependence
on Ω2. As a consequence of this, the effective polarizability of a
rotating sphere becomes α ±

eff ;iðωÞ ¼ αiðωÞ þOðΩ2Þ, as shown in
the Supplementary Note 1. Notice that the component of the
polarizability along the rotation axis, which does not contribute to
the Casimir torque, is not affected by the rotation.

Di

dij

Dj

z

Fig. 1 System schematics. The system under study consists of a chain of N
nanoparticles with diameters Di separated by a center-to-center distance dij.
The nanoparticles are assumed to rotate around the axis of the chain
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Rotational dynamics. Under realistic conditions, Ωi is smaller
than both the thermal frequency kBT/ℏ (≈6 THz at room tem-
perature) and the frequencies of the optical modes of the nano-
particles (≈28 THz for SiC). This allows us to expand M ±

i in
powers of Ωi and retain the lowest nonvanishing order, which is
the linear one. This linear approximation is accurate for angular
velocities up to Ωi/2π~100 GHz, as shown in Supplementary
Fig. 1. Importantly, within this limit, the corrections to the
effective polarizability discussed above become irrelevant.
Assuming all particles and the environment have the same finite
temperature, we can write the following equation for their angular
velocities:

_Ωi ¼
XN

j¼1

HijΩj;

where the matrix H has components Hij ¼ h0i δij þ hij with

h0i
hij

 !
¼ 4!h

πIi

Z

0

1
dω

Γ0i
Γij

 !
∂nðωÞ
∂ω

:

Here, Ii ¼ πρD5
i =60 is the moment of inertia of the

nanoparticles, and ρ their mass density. The expressions for Γ0i
and Γij are obtained from the corresponding definitions above by
setting all angular velocities to zero.

We can hence study the rotation dynamics of a chain
by analyzing its natural decay rates and modes given, respectively,
by the eigenvalues and eigenvectors of H. As an initial example,
we analyze a chain with N= 5 SiC spheres, all of them with
identical diameter D= 10 nm, that are uniformly distributed with
a center-to-center distance d= 1.5D. Throughout this work,
unless stated otherwise, we assume that all of the particles remain
at the same temperature as the environment, and set that
temperature to 300 K. This assumption is a good approximation
for the systems under consideration, as discussed in the
Supplementary Note 2 and Supplementary Fig. 2. The polariz-
ability of the particles is obtained from the dipolar Mie
coefficient43 with the dielectric function of SiC modeled
as εðωÞ ¼ ε1 1þ ðω2

L ' ω2
TÞ=ðω2

T ' ω2 ' iωγÞ
$ %

, with ε∞= 6.7,
ħωT= 98.3 meV, ħωL= 120 meV, and ħγ= 0.59 meV 44. With
this choice of size and material, the optical response of the
nanoparticles is dominated by a phonon polariton at ≈28 THz.
Figure 2a shows the different components of H for the chain
under analysis. As a consequence of the prevalent role of the
near-field coupling, the matrix is almost tridiagonal. Further-
more, the diagonal elements are all negative, with the contribu-
tion of the environment, h0i , being five orders of magnitude
smaller than that of the particle–particle interaction hij, as shown
in Fig. 2b. Interestingly, H is a negative definite matrix (i.e., all of
its eigenvalues are strictly negative), which ensures that, in
absence of external driving, the angular velocities decay to zero at
large times.

The natural modes of the chain, together with the correspond-
ing decay rates, are displayed in Fig. 2c. The first natural mode
corresponds to all particles rotating with the same angular
velocity, which makes the contribution arising from the
particle–particle interaction vanish, leaving only the Casimir
torque produced by the environment. This results in a decay rate
λ1=−0.95 × 10−6 s−1 (in perfect agreement with the stopping
time calculated in ref. 14 for single particles), much smaller than
those of the remaining modes, which are all on the order of s−1.
In these other modes, the particles rotate with angular velocities
of different magnitude and sign, but, as expected from the
symmetry of the system, the modes are either even or odd with
respect to the central particle, which, consequently, is at rest in
the odd modes.

Figure 2d–f show the temporal evolution of the angular
velocities of the particles for three different initial conditions.
Specifically, in Fig. 2d, only particle 1 (black) is initially rotating
with Ω1/2π= 10 GHz, an angular velocity that is within
experimental reach, as recently demonstrated45,46. As time
evolves, the rotation is transferred through the chain to the other
particles, resulting in a synchronized rotation dynamics after a
few seconds, in which the initial angular momentum is uniformly
distributed among all particles. The situation is different when
particle 5 (yellow) is also set to rotate initially at Ω5=−Ω1. In
this case, since the initial angular momentum of the system is
zero, the rotation of the particles ends after a few seconds, as
shown in Fig. 2e. It is important to notice that any initial state
with finite angular momentum must have a nonzero overlap with
the first natural mode. In these cases, after synchronization, the
angular velocity of the particles gradually decreases and
eventually stops on a much larger timescale ≈|λ1|−1, as a
consequence of the Casimir torque produced by the environment
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Fig. 2 Rotational dynamics. a Hij for a chain of N= 5 identical particles with
D= 10 nm made of SiC, which are uniformly distributed with a center-to-
center distance d= 1.5D. b Diagonal components of hij (blue) and the
corresponding h0i (red). Notice the different scale. c Natural modes of
the chain obtained by diagonalizing Hij and the corresponding decay rates.
d–f Temporal evolution of the angular velocity of each particle in the chain
for three different initial conditions
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(i.e., h0i ). This can be seen in Fig. 2f, where we plot the temporal
evolution of the chain when initialized in the first natural mode.

The rotation dynamics of chains with arbitrarily large N can be
understood in a similar way by analyzing the corresponding
decay rates and natural modes. In Fig. 3, we plot the decay rates
of chains with different N as a function of an effective momentum
keff, defined as keffd/π= (n−1)/(N−1), where n is the index
labeling the natural modes. The effective momentum is directly
proportional to the number of nodes of the natural mode, i.e., the
number of times that its components change sign. Examining
Fig. 3, we observe that, as N increases, the decay rates converge to
a curve that resembles the dispersion relation of the transversal
mode of the infinite chain47. As in the N= 5 case analyzed before,
the first mode always corresponds to all particles rotating with the
same angular velocity (see Supplementary Fig. 3), which means
that only the environment contributes to the Casimir torque, thus
resulting in a decay rate λ1 with values ≈10−6 s−1 for any N, as
shown in the inset. As keff increases, the corresponding modes
show a more complicated pattern in which neighboring particles
rotate with increasingly different angular velocities (see Supple-
mentary Fig. 3). This makes the contribution arising from the
particle–particle interaction increase, leading to much faster
decay rates.

Exotic dynamics. We can use the insight obtained from the
analysis of the natural modes and decay rates to study the
behavior of chains with more exotic rotation dynamics. In

particular, by breaking the uniformity in the particle separation, it
is possible to obtain a “rattleback”-like rotation dynamics32,33, in
which a particle reverses its sense of rotation multiple times
during the synchronization process. This is shown in Fig. 4a for a
chain of N= 3 SiC particles with D= 10 nm, in which the central
particle is, respectively, at distance 2d and d (with d= 1.5D) from
the left and right particles, as depicted in the inset. Analyzing the
dynamics of the system, we observe that particle 2 (red) changes
its sense of rotation two times before all particles synchronize.
This happens because this particle synchronizes first with particle
3, due to the smaller distance that separates them, which results in
a larger coupling, and, therefore, Casimir torque, among them.
After that, both particles 2 and 3 have to synchronize with par-
ticle 1 and, since the total initial angular momentum is positive,
the synchronized angular velocities have to be positive. Interest-
ingly, it is possible to obtain more reversals in the sense of
rotation using chains with larger N, as shown in Supplementary
Fig. 4 for a chain with five particles. In all cases, after synchro-
nization, the rotation velocities of the particles decay as a con-
sequence of the Casimir torque produced by the environment.

Another interesting situation arises when the particles in the
chain have different sizes. In particular, it is possible to make the
decay rates of two different modes equal, as shown in Fig. 4b for
the N= 3 chain depicted in the inset of Fig. 4c, with D= 10 nm
and d= 3D. Clearly, as the diameter of the central particle D′
increases, the decay rates of the second (green curve) and third
(yellow curve) natural modes cross each other. At the crossing
point D′= 1.914D, the degeneracy of the natural modes allows us
to prepare the system in an initial state such that angular
momentum is only transferred between the central and one of the
side particles, without altering the dynamics of the remaining one.
We analyze two different examples of this behavior in Fig. 4c,
where we plot the temporal evolution of the angular momentum,
L(t)= IΩ(t), for each of the three particles. The corresponding
initial angular velocities are: Ω1/2π= 10 GHz+Ωc/2π, Ω2/2π=
−0.39 GHz+Ωc/2π, and Ω3=Ωc (see the Supplementary
Note 3). In the first example, we choose Ωc= 0, whereas in the
second one, Ωc/2π= 5 GHz. In both cases, as expected, the
angular momentum of particles 1 (black curve) and 2 (red curve)
changes identically, but with opposite signs, while the angular
momentum of particle 3 remains completely unchanged (blue
curve).

Driven dynamics. So far, we have analyzed systems in free
rotation, in which the initial angular momentum is transferred
among the particles in the chain and is eventually dissipated into
the surrounding environment. The situation is different when one
or more particles in the chain are externally driven so their
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angular velocities remain constant. These particles act as a con-
tinuous source of angular momentum, which is transferred to the
rest of the particles of the chain, and, as a consequence, after some
transient evolution, the whole system reaches a steady-state
rotation dynamics. As an initial example, we consider the chain of
N= 30 identical SiC nanoparticles shown in the inset of Fig. 5a,
in which particle 1 is externally driven at a constant angular
velocity Ω1/2π= 10 GHz. We consider two different combina-
tions of D and d for which we calculate the corresponding steady-
state angular velocities, which are displayed in Fig. 5a. These
velocities are determined by the interplay between the contribu-
tions to the Casimir torque arising from the environment and
particle–particle interactions, with the former being the
mechanism that dissipates angular momentum out of the chain,
and the latter being the one that mediates its transfer between the
particles. For D= 10 nm and d= 1.5D (black curve), the envir-
onment contribution is much smaller than that of the
particle–particle interaction and, consequently, the angular velo-
cities are almost identical. However, for D= 50 nm and d= 3D
(red curve), the difference between the two contributions is
reduced (see Supplementary Fig. 5), and, therefore, the angular
velocities significantly decrease as we move away from the driven
particle. This demonstrates that an efficient transfer of angular
momentum is possible in systems for which jhiij + jh0i j.

Another interesting situation arises when two particles in the
chain are driven at opposite angular velocities. In this case, as
shown in Fig. 5b, the particles located between them have steady-
state angular velocities with values uniformly distributed between
those of the driven particles. On the other hand, the particles
outside display almost constant velocities, which are determined
by the separation between the driven particles.

Discussion
In summary, we have shown that the Casimir torque enables an
efficient transfer of angular momentum at the nanoscale. To that
end, we have analyzed the dynamics of chains of rotating nano-
particles with an arbitrary number of elements. We have found

that this noncontact interaction leads to rotational dynamics
happening on timescales as fast as seconds for nanoscale particles,
which corresponds to torques on the order of 10−27 Nm for
angular velocities of 10 GHz, both of which are within experi-
mental reach13,45,46,48,49. We have derived an analytical formal-
ism describing the rotational dynamics of these systems, which is
based on the analysis of the natural modes of the chain, and
exploited it to reveal unexpected behaviors. These include a
“rattleback”-like dynamics, in which the sense of rotation of a
particle changes multiple times before synchronization, as well as
configurations for which a selected particle is left out of the
angular momentum transfer process. Furthermore, by analyzing
the steady-state angular velocities of systems in which one or
more particles are externally driven, we have established the
conditions under which an efficient transfer of angular momen-
tum can be achieved. A possible experimental verification of our
results would involve the use of nanoparticles trapped with
optical tweezers45,46,48, or molecules with rotational degrees of
freedom, such as as chains of fullerenes50, whose angular velocity
can be detected through measurements of rotational frequency
shifts51,52. The presented results describe a mechanism for the
noncontact transfer of angular momentum at the nanoscale,
which brings new opportunities for the control of nanomecha-
nical devices.

Methods
The system under consideration is depicted in Fig. 1. It consists of a linear chain
with N spherical nanoparticles. Each of the particles has a diameter Di and is
separated from its neighbors by a center-to-center distance dij. All of the particles
are allowed to rotate with arbitrary angular velocity Ωi around the axis of the chain,
which we choose to be the z-axis. As discussed in the paper, we assume that the size
of the particles is much smaller than the relevant wavelengths of the problem,
which are determined by the temperature, the angular velocities, and the material
properties of the particles, and use geometries obeying dij ! 3

2maxðDi;DjÞ. Within
these limits, we can model each particle as a point electric dipole with a frequency-
dependent polarizability αi(ω). This allows us to write the torque acting on particle
i as Mi ¼ hpiðtÞ ´EiðtÞi %bz, where 〈〉 represents the average over fluctuations.
Working in the frequency domain ω, defined via the Fourier transform

piðtÞ ¼
R1

'1

dω
2πpiðωÞe

'iωt , for the dipole moment, and similarly for other quantities,

and using the circular basis defined as: be± ¼ ð1=
ffiffiffi
2

p
Þðbx ± ibyÞ, and be0 ¼ bz, we can

rewrite the torque as Mi ¼ Mþ
i 'M'

i with

M ±
i ¼ i

Z 1

'1

dωdω′
4π2

e'iðω'ω′Þt p± ,
i ðω′ÞE ±

i ðωÞ
' (

: ð1Þ

I-n this expression, * denotes the complex conjugate, while p ±
i ðωÞ and E ±

i ðωÞ
are the self-consistent dipole moment and electric field in particle i, which originate
from the vacuum and thermal fluctuations of: (i) the dipole moments of the
particles in the chain pfl; ±j ðωÞ and (ii) the electric field Efl; ±

j ðωÞ. We can write
p ±
i ðωÞ and E ±

i ðωÞ in terms of pfl;±j ðωÞ and Efl; ±
j ðωÞ as

p ±
i ðωÞ ¼ pfl;±i ðωÞ þ α ±

eff ;iðωÞE
fl;±
i ðωÞ þ α ±

eff ;iðωÞ
PN

j≠i
GijðωÞp ±

j ðωÞ;

E ±
i ðωÞ ¼ Efl; ±

i ðωÞ þ
PN

j≠i
GijðωÞp ±

j ðωÞ þ G0ðωÞp±
i ðωÞ;

where GijðωÞ ¼ ð1' δijÞexpðikdijÞ½ðkdijÞ
2 þ ikdij ' 1*=d3ij is the dipole–dipole

interaction between particles i and j, k=ω/c, and G0ðωÞ ¼ 2i
3 k

3. Notice that the
inclusion of G0(ω) is necessary to account for radiative corrections38. Furthermore,
α ±
eff ;iðωÞ is the effective polarizability of particle i as seen from the frame at rest.

Following the notation of ref. 53, these equations can be solved simultaneously as

p ±
i ðωÞ ¼

PN

j¼1
A±
ij ðωÞp

fl;±
j ðωÞ þ

PN

j¼1
B±
ij E

fl;±
j ðωÞ;

E ±
i ðωÞ ¼

PN

j¼1
C ±
ij ðωÞp

fl;±
j ðωÞ þ

PN

j¼1
D ±
ij ðωÞE

fl;±
j ðωÞ;

where A±
ij ðωÞ are the matrix elements of the N ×N matrix defined as

A ± ðωÞ ¼ I ' α ± ðωÞGðωÞ½ *'1, with α± being a diagonal matrix whose components
are α ±

eff ;iðωÞ, and G the dipole–dipole interaction matrix with components Gij(ω).
Similarly, the other matrices are defined as B±

ij ðωÞ ¼ A±
ij ðωÞα ±

eff ;jðωÞ,
C ±
ij ðωÞ ¼

PN

k¼1
δikG0ðωÞ þ GikðωÞ½ *A±

kj ðωÞ, andD ±
ij ðωÞ ¼ δij þ C ±

ij ðωÞα ±
eff ;jðωÞ. Using

these expressions, we can write Eq. (1) in terms of averages over the dipole and field
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fluctuations

M ±
i ¼ i

Z 1

'1

dωdω′
4π2

e'iðω'ω′Þt
XN

j;k¼1

A± ,
ij ðω′ÞC ±

ik ðωÞhp
fl;± ,
j ðω′Þpfl; ±k ðωÞi

h

þB± ,
ij ðω′ÞD±

ik ðωÞhE
fl; ± ,
j ðω′ÞEfl;±

k ðωÞi
i
:

ð2Þ

Notice that there are no cross terms involving dipole and field fluctuations since
these are uncorrelated14. In order to evaluate the averages over fluctuations, we use
the fluctuation–dissipation theorem14,35,36, which, for dipole fluctuations, taking
into account the rotation of the particles, reads

pfl; ± ,j ðω′Þpfl;±k ðωÞ
D E

¼ 4π!hδðω' ω′Þχ ±
j ðωÞδjk njðω

(
j Þ þ

1
2

) *
; ð3Þ

where ω±
i ¼ ω±Ωi and we use χ ±

i ðωÞ ¼ Im α ±
eff ;iðωÞ

n o
' 2ω3

3c3 α ±
eff ;iðωÞ

###
###
2
instead of

Imfα±
eff ;iðωÞg to account for the radiative corrections in the response of the

nanoparticle54,55. Similarly, for the field fluctuations

hEfl;± ,
j ðω′ÞEfl; ±

k ðωÞi ¼ 4π!hδðω' ω′ÞIm δjkG0ðωÞ þ GjkðωÞ
n o

n0ðωÞ þ
1
2

) *
: ð4Þ

In these expressions, ni(ω)= [exp(ℏω/kBTi)−1]−1 is the Bose–Einstein distribution
at temperature Ti, while T0 is the temperature of the surrounding vacuum.

With these tools, we can evaluate the averaged dipole and field fluctuations
occurring in Eq. (2). We begin with the first term in that equation, which involves
the dipole fluctuations. After using the fluctuation–dissipation theorem given in
Eq. (3), we get

M ±
i;p ¼

i!h
π

Z 1

'1
dω
XN

j¼1

A± ,
ij ðωÞC±

ij ðωÞχ
±
j ðωÞ njðω

(
j Þ þ

1
2

) *
:

We can simplify the integral over frequency by noting that
nið'ω±ΩiÞþ1

2 ¼ 'niðω(ΩiÞ ' 1
2 and that, due to causality, Gijð'ωÞ ¼ G,

ijðωÞ
and α ±

eff ;ið'ωÞ ¼ α(,
eff ;iðωÞ, which also imply that T ±

ij ð'ωÞ ¼ T(,
ij ðωÞ, where T=

A, B, C, or D. By doing so, we obtain

M ±
i;p ¼ ' 2!h

π

Z 1

0
dω
XN

j¼1

2k3

3
A±
ij ðωÞ

###
###
2
þ
XN

k¼1

Im A± ,
ij ðωÞA±

ki ðωÞGjkðωÞ
n o" #

χ ±
j ðωÞ njðω

(
j Þ þ

1
2

) *
:

Using
PN

m¼1
A±
imðωÞα±

eff ;mðωÞGmjðωÞ ¼ A±
ij ðωÞ ' δij , the expression above reduces

to

M ±
i;p ¼ ' 2!h

π

R1
0 dω 2k3

3 Re 2A±
ii ðωÞ ' 1

! "
þ Im S±

ii ðωÞ
! "$ %

χ ±
i ðωÞ niðω

(
i Þ þ 1

2

$ %

þ 2!h
π

R1
0 dω

PN

j¼1
S±
ij ðωÞ

###
###
2
χ ±
i ðωÞχ ±

j ðωÞ njðω
(
j Þ þ 1

2

h i
;

ð5Þ

where S±
ij ðωÞ ¼

PN
m¼1A

±
miðωÞGmjðωÞ.

The second term in Eq. (2) can be computed in a similar way using, in this case,
Eq. (4). This leads to

M ±
i;E ¼ i!h

π

Z 1

'1
dω
XN

j;k¼1

B± ,
ij ðωÞD ±

ik ðωÞIm G0ðωÞδjk þ GjkðωÞ
n o

n0ðωÞ þ
1
2

) *
:

Following the same steps as above and using the definitions of B±
ij ðωÞ and

D±
ij ðωÞ, this expression reduces to

M ±
i;E ¼2!h

π

Z 1

0
dω

2k3

3
Re 2A±

ii ðωÞ ' 1
! "

þ Im S±
ii ðωÞ

! ") *
χ ±
i ðωÞ n0ðωÞ þ

1
2

) *

' 2!h
π

Z 1

0
dω
XN

j¼1

S±
ij ðωÞ

###
###
2
χ ±
i ðωÞχ

±
j ðωÞ n0ðωÞ þ

1
2

) *
:

ð6Þ

Finally, combining Eqs. (5) and (6), we obtain the expression of the Casimir
torque given in the paper.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author on reasonable request.
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Supplementary Figure 1. Validity of linear approximation in the calculation of the torque. (a) Torque, plotted as a function of
the angular velocity, for a rotating SiC nanoparticle of D = 10 nm placed at a distance d = 1.5D from an identical nanoparticle
at rest. The solid black curve represents the results obtained using the full model ignoring terms O(⌦2) in the e↵ective
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Zoom of the results shown in (a) over the GHz region. In both panels the agreement between the two approaches is perfect.
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Supplementary Figure 2. Thermal e↵ects on the Casimir torque. (a) The black curve shows the absolute value of the rate of
change of the rotational energy, |P

rot

|, for a rotating SiC nanoparticle of D = 10nm placed at a distance d = 1.5D from an
identical nanoparticle at rest. We assume that the particles and the environment are at a temperature of 300K. The solid red,
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SUPPLEMENTARY NOTE 1: POLARIZABILITY OF A ROTATING PARTICLE IN THE REST FRAME

The polarizability of a nonrotating nanosphere, arising from an optical resonance, can be modeled using a harmonic
oscillator model. Within that approximation, the motion of the charges that give rise to the resonance obeys the
following equation of motion [1]

r̈(t) = �!2

0

r(t)� �ṙ(t) +
2Q2

3Mc3
...
r (t) +

Q

M
E(t).

Here, !
0

is the frequency of the optical resonance, � is the nonradiative damping of the resonance, Q and M are the
total charge and mass of the oscillating charges, and E is the external field. The third term on the right-hand side
corresponds to the Abraham-Lorentz force and describes the radiative damping. If the particle is set to rotate around
the z axis with an angular velocity ⌦ = ⌦ẑ, the equation of motion above becomes

r̈(t) = �!2

0

r(t) + ⌦2[r(t)� ẑ(ẑ · r(t))]� �ṙ(t) +
2Q2

3Mc3
...
r (t) +

Q

M
E(t), (1)

where the extra term arises from the centripetal acceleration. This equation of motion can be transformed to the
frame rotating with the nanoparticle. By doing so, and using ⇠ to denote the variables in the rotating frame, we
obtain

¨

r̃(t) = � 2⌦⇥ ˙

r̃(t)�⌦⇥ (⌦⇥ r̃(t))� !2

0

r̃(t) + ⌦2 [̃r(t)� ẑ(ẑ · r̃(t))]� �
⇣
˙

r̃(t) +⌦⇥ r̃(t)
⌘
+

Q

M
˜

E(t)

+
2Q2

3Mc3

h...
r̃ (t) + 3⌦⇥¨

r̃(t) + 3⌦⇥
⇣
⌦⇥ ˙

r̃(t)
⌘
� ⌦2

⌦⇥ r̃(t)
i
,

where the new terms on the right-hand side are associated with the Coriolis force and the centrifugal forces. Changing
to the circular basis defined as: ê± = (1/

p
2)(x̂ ± iŷ), and ê

0

= ẑ, the equation of motion for the ± components
becomes

¨̃r±(t) = ± 2i⌦ ˙̃r±(t) + ⌦2r̃±(t)� (!2

0

� ⌦2)r̃±(t)� � ˙̃r±(t)± i�⌦r̃±(t) +
Q

M
Ẽ±(t)

+
2Q2

3Mc3
⇥⌥3i⌦¨̃r±(t)� 3⌦2 ˙̃r±(t)± i⌦3r̃±(t)

⇤
.

Assuming that Ẽ±(t), and therefore r̃±(t), oscillate at frequency !, we can calculate the ± components of the
polarizability of the nanoparticle in the rotating frame

↵̃±(!) =

3c3

2!2
0
�r

!2

0

� ⌦2 � (! ± ⌦)2 � i�(! ± ⌦)� i�r
(!±⌦)

3

!2
0

,

where we have defined �r = (2Q2!2

0

)/(3Mc3). We can transform this polarizability to the frame at rest to obtain the
following e↵ective polarizability

↵±
e↵

(!) =

3c3

2!2
0
�r

!2

0

� ⌦2 � !2 � i�! � i�r
!3

!2
0

.

Notice that this equation can also be directly obtained from Eq. (1). In summary, the e↵ect of rotation is a shift of
the resonance, which for ⌦ ⌧ !

0

becomes !
0

� ⌦2/(2!
0

).

SUPPLEMENTARY NOTE 2: ANALYSIS OF THE THERMAL EQUILIBRIUM APPROXIMATION

Throughout the manuscript, we assume that the nanoparticles remain at the same temperature as the environment.
To verify the validity of this approximation, we can analyze the rate of change of the rotational energy of the
nanoparticles, P

rot

, which can be written as P
rot

=
PN

i=1

⌦iMi  0 in terms of the angular velocity and the torque
acting on the particles. The energy lost from the decrease in rotation has to be either radiated or converted into an
increase of the temperature of the nanoparticles. The full calculation of the coupled thermal and mechanical dynamics
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of the particles is beyond the scope of this work. However, we can estimate the maximum increase in the temperature
of the nanoparticles from P

rot

+ P
rad

(T
0

+�T ) = 0, where P
rad

(T
0

+�T ) is the power radiated by the nanoparticles
to the environment when their temperatures are �T above that of the environment, T

0

. If this equality is satisfied,
all the energy lost from the decrease in rotation is radiated to the environment, and, therefore, the temperature of
the particles does not further increase. It is worth noting that the value of �T obtained from this equality is an
overestimation, since it does not account for the energy required to reach that temperature.

The black solid line in Supplementary Fig. 2(a) shows P
rot

for a rotating SiC nanoparticle of diameter D = 10nm
placed at a distance d = 1.5D from an identical nanoparticle at rest. This calculation, which is performed using the
full model neglecting terms O(⌦2) in the e↵ective polarizability (see Supplementary Fig. 1), assumes the particles
and the environment to be at 300K. The value of P

rot

is compared with the power radiated by the two nanoparticles,
P
rad

(T
0

+�T ), when T
0

+�T = 301K, 305K, and 310K. The corresponding results are indicated by the solid red,
green, and blue curves. We calculate P

rad

(T
0

+�T ) following the approach of [2], and, therefore, we do not consider
the e↵ect of the rotation, which, for ⌦i ⌧ kBT0

/h̄, is expected to be negligible. Examining these results, we observe
that �T is always smaller than 5K for the angular velocities under consideration. This change in temperature does
not appreciably alter the value of the torque, as shown in panel (b), where we calculate the torque on particle 1
assuming that both particles and the environment are at temperature 300K (black curve), 301K (red curve), 305K
(green curve), or 310K (blue curve).

It is important to notice that this approach assumes that all of the particles have the same temperature, which
is, indeed, a very good approximation since the transfer of energy between the nanoparticles happens several orders
of magnitude faster than the transfer of energy from them to the environment. This can be seen by looking at the
dashed curves on Supplementary Fig. 2(a), which signal the rate of energy transfer from particle 1 to particle 2 when
the former is at temperature T

0

+�T and the latter is at the same temperature as the environment, T
0

.

SUPPLEMENTARY NOTE 3: DEGENERATE DECAY RATES

The natural modes of the system considered in Figure 4(c) of the main paper are

ê

1

=

0

@
0.577
0.577
0.577

1

A
ê

2

=

0

@
0.707

0.605⇥ 10�14

�0.707

1

A
ê

3

=

0

@
0.706
�0.055
0.706

1

A ,

where we are using a notation in which the first, second, and third components correspond, respectively, to the
angular velocity of the first, second, and third particles. The associated decay rates are �

1

= �0.331⇥ 10�6 s�1 and
�
2

= �
3

= �0.085 s�1. If we take a superposition of modes 2 and 3, we can build a rotation state that decays with
the same rate �

2

= �
3

. Consider, for instance, the following initial angular velocity for the chain: ⌦(0) = c
2

ê

2

+ c
3

ê

3

,
where c

3

= 1.001c
2

. With this superposition, we have that ⌦
3

(0) = 0, while ⌦
1

(0) = 1.414c
2

and ⌦
2

(0) = �0.055c
2

.
Therefore, this choice of initial angular velocities forces particle 3 to be at rest for the entire course of the dynamics.
We can alternatively choose an initial condition such that particle 3 is forced to rotate at any desired angular frequency
⌦c. This can be achieved by including a component proportional to ê

1

, i.e., ⌦(0) = c
1

ê

1

+ c
2

ê

2

+ c
3

ê

3

. By doing so,
we find ⌦

3

(0) = 0.577c
1

= ⌦c, while ⌦
1

(0) = 1.414c
2

+ 0.577c
1

and ⌦
2

(0) = �0.055c
2

+ 0.577c
1

.
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