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Abstract
We investigate how the local density of states in a plasmonic cavity changes due to the presence of a
distorting quantum emitter. To this end, we use first-order scattering theory involving
electromagnetic Green’s function tensors for the bare cavity connecting the positions of the
emitter that distorts the density of states and the one that probes it. The confined, quasistatic
character of the plasmonic modes enables us to write the density of states as a Lorentzian sum.
This way, we identify three different mechanisms behind the asymmetric spectral features
emerging due to the emitter distortion: the modification of the plasmonic coupling to the probing
emitter, the emergence of modal-like quadratic contributions and the absorption by the distorting
emitter. We apply our theory to the study of two different systems (nanoparticle-on-mirror and
asymmetric bow-tie-like geometries) to show the generality of our approach, whose validity is
tested against numerical simulations. Finally, we provide an interpretation of our results in terms
of a Hamiltonian model describing the distorted cavity.

1. Introduction

During the past decade, plasmonic cavities emerged as one of the key platforms to both explore and exploit
light–matter interactions at the nanoscale, giving rise to a plethora of plasmonic-based research and
applications in areas such as optomechanics [1], biosensing [2, 3] or spectroscopy [4–6]. Those rely on the
remarkable strength of plasmon–emitter interactions originating from the subwavelength field confinement
that takes place in metallic nanostructures. Despite the relatively large losses associated to metals, this light
shrinking allows to probe the coupling between electromagnetic (EM) fields and quantum emitters (QEs),
even to the limits where those reveal their inner structure [7–13]. On the other hand, the emission
properties of QEs are not inherent to them. It is well known that plasmonic modes sustained by
nanocavities modify their emission properties through Purcell effect, which implies that the characteristics
of the light radiated by QEs depend on the photonic local density of states (LDOS) in their surroundings
[14, 15]. Recent theoretical reports have also revealed the key role played by the LDOS in molecule
interactions in resonant cavities [16, 17].

The spatial and spectral properties of the LDOSs associated to nanocavities (where both metal and
dielectric media coexist) result from the interplay between the wavelength of the EM fields, λ, and the
length scale of the system, L, characterized by the ratio ξ = L/λ. Plasmonic nanocavities typically operate in
the quasistatic limit (ξ � 1), in which metal absorption yields an LDOS composed of a number of
symmetric Lorentzian-shaped peaks [8, 18, 19], which admits quantization in terms of non-interacting
bosonic modes [20–23]. On the other hand, in photonic crystals and larger cavities (ξ� 1), fully
electrodynamic interference and retardation effects give rise to asymmetric and Fano-like lineshapes, as
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those reported in references [24, 25]. It has been recently shown that non-Lorentzian-like spectral features
can be described using general Hamiltonians involving interacting photonic modes [26, 27]. In the context
of PT-symmetric exceptional points, theoretical reports have revealed that quadratic Lorentzian
contributions [28] emerge in the LDOS of resonators combining optical gain and loss [29].

From the experimental perspective, the development of different nanofabrication techniques [30–33] is
progressively overcoming the difficulties inherent to the control of both the exact number of QEs as far as
their exact position and orientation inside a nanocavity. This way, innovative structures have led to novel
scenarios for light–matter interactions. Recent experiments reached the strong coupling regime [34] in the
limit of very few or even single QEs at room temperature [35, 36] within the field of plasmonic cavities.
Moreover, it has been shown that hybrid structures [37, 38] and photonic crystals [25] provide new means
for the spectral design of LDOS. The efficient control of light emission procured by those systems open new
roads for quantum information technologies [39–41] not only at the few emitter level, but also for
mesoscopic QE ensembles [42]. This fact is especially relevant in the context of the emergent field of
quantum optical metamaterials [43, 44].

In this article, we present a theoretical study of how the presence of a QE can distort the LDOS in a
plasmonic cavity. Firstly, due to its experimental relevance, we focus our attention on the
nanoparticle-on-mirror (NPoM) geometry. We will exploit that the optical response of its two-dimensional
counterpart can be described analytically by means of transformation optics in the quasistatic limit (ξ � 1)
[23, 45, 46]. We quantify the distortion due to the QE through the so-called generalized Purcell factor
[24, 28] (defined as the LDOS normalized to its free-space value) and the spectral density J(ω). Those
quantities are calculated through first-order scattering theory applied to the EM Green’s function of the
bare cavity. Exploiting the quasistatic character of the NPoM plasmonic modes we write it as a sum of
complex Lorentzians. While J(ω) of the bare cavity presents only symmetric Lorentzian peaks, our theory
reveals that non-Lorentzian terms arise due to the distorting emitter. We unveil three different mechanisms
behind these features, yielding asymmetric profiles even in this deeply subwavelength system. Finally, to
prove the generality of the physical phenomena found in the NPoM case, we consider an asymmetric
bow-tie-like three-dimensional architecture, whose analytical treatment is not possible. Applying the same
scattering formalism, we obtain J(ω) of this hybrid QE-cavity system. We check our results against
full-numerical EM simulations in which the distorting emitter is modelled through an effective permittivity
defined to reproduce the free-space polarizability of an absorbing two level system.

2. Theoretical frame

2.1. Scattering formalism for the Dyadic Green’s function
The general form of the system under study is presented in figure 1(a): two QEs interacting with a
nanocavity that sustains plasmonic resonances. The first QE probes the LDOS of the hybrid system
composed by the nanostructure and the second QE. Our focus will be in analysing how this emitter distorts
the spectral density of the bare cavity. The metallic resonator, embedded in a surrounding medium (εr = 1),
is described through a Drude-fitting to Ag permittivity of the form ε(ω) = ε∞ − ω2

p/(ω(ω + iγm)) with
parameters ε∞ = 9.7, ωp = 8.91 eV and γm = 0.06 eV. In general, we use the convention � = 1 and any
parameter related to frequency will have energy dimensions. The probing and distorting QEs are
characterized by their dipole momenta (μ = μn̂μ,μE = μEn̂E), their respective transition frequencies
(ω,ωE) and their positions (r, rE). This path opens the possibility of studying the problem in terms of
Green’s function tensor G(r, r,ω). We assume that the interaction between the cavity plasmons and the
distorting emitter is weak, which allows us to express the system EM Green’s function tensor through the
first-order correction in scattering theory. Moreover, in the single-excitation subspace, the distorting QE,

μE, is modelled through an atom-like polarizability in the form αE(ω) =
μ2

E
�
LE(ω), where

LE(ω) = 1
(ωE−iγE/2)−ω

is the complex Lorentzian function defined by ωE and γE, the absorption linewidth
[47]. Thus, we are able to write the Green’s function tensor for the hybrid cavity-QE system, GII(r, r,ω), in
terms of its counterpart for the bare cavity, GI(r, r,ω) [48, 49],

GII(r, r,ω) = GI(r, r,ω) +Ψ0GI(r, rE,ω)α̃E(ω)GI(rE, r,ω), (1)

where Ψ0 is a frequency dependent factor which depends on the problem dimensionality. It

takes the values Ψ0 =
ω2

ε0c2 for three-dimensional (3D) calculations or Ψ0 =
4ω3

3πε0c3 if we consider
two-dimensional (2D) systems. The polarizability tensor reads α̃E(ω) = α̃E(ω)T(n̂E) where
α̃E(ω) = αE(ω)/ (1 − iβI(rE, rE,ω)αE(ω)) and the tensor [T(n̂E)]ij = [n̂E]iδij accounts for the orientation of
the distorting QE (δij is Kronecker delta). Note that βI(rE, rE,ω) = Ψ0 Im{n̂EGI(rE, rE,ω)n̂E} plays the role
of the so-called depolarization tensor in scattering theory [50, 51], introducing a radiative-reaction
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Figure 1. Motivation. (a) Sketch of the system under study. A QE, μ, probes the LDOS of a plasmonic cavity, with metal
permittivity ε(ω), modified by the presence of a second emitter, μE. Grey arrows sketch the two terms in the first-order scattering
theory description of the total Green’s function. (b) Normalized LDOS experienced by an emitter in free space when a second,
parallel one, is placed in its surroundings. Colour code (indicated in the legend) corresponds to different separations between
emitters (d = (rE − r)⊥μ).

correction to the free-space QE polarizability [52]. It is expressed in terms of the bare cavity Green’s
function, and therefore does not only account for far-field radiation losses but mainly for near-field
plasmonic absorption. As discussed above, the Purcell factor corresponds to the normalized LDOS. This is
defined as Pf

i(ω) = Im{n̂μGi(r, r,ω)n̂μ}/Im{n̂μG0(r, r,ω)n̂μ}. G0(r, r′,ω) = [I + c2

ω2 ∇∇]G0(r, r′,ω) is the
Green’s function tensor in free space, where G0(r, r′,ω) is the scalar Helmholtz Green’s function. Index
i = I, II refers to the bare and QE-distorted cavity, respectively. Figure 1(b) shows the modification of the
free-space LDOS by a single QE, i.e. GI(r, rE,ω) = G0(r, rE,ω) in equation (1). A Purcell factor peak
emerges in the spectrum, that inherits its Lorentzian-like shape from the QE absorption lineshape.
Throughout this work, the QE parameters (μE = 0.4 e nm, γE = 0.03 eV) are set in agreement with recent
experimental characterization of dye molecules [53]. The dipole moments of both QEs are parallel to each
other (n̂μ‖n̂E) and d = (rE − r)⊥n̂μ. The height of the LDOS maximum is set by the dipole moment
strength of the distorting QE and |d|, the distance between the emitters, for which we chose three different
values. We can observe Purcell enhancements as large as 103 for QE–QE distances as small as 1 nm.

2.2. Full electrodynamic solutions
In order to check the validity of our scattering approach, we perform finite-element simulations using
COMSOL Multiphysics. In our numerical calculations, the probing QE, μ, is treated as a dipolar EM source
in the presence of the bare metal cavity. Then, we add an spherical particle with radius a as the object that
effectively simulates the absorbing character of the distorting QE, μE. Its effective permittivity is chosen to
match the atom-like polarizability. Using the quasistatic scattering of a dielectric sphere under plane-wave
illumination, we can write αE(ω) = 4πε0a3 εeff(ω)−1

εeff(ω)+2 , or εeff(ω) = 1+2η3D (ω)
1−η3D(ω) , where η3D(ω) = αE(ω)

4πε0a3 . The value
of the free parameter a is set by means of free-space calculations similar to those in figure 1(b). The radius
of the distorting QE is made small enough to reach convergence in the Purcell factor spectrum. Note that
the effective permittivity used for simulations does not require the introduction of radiative reaction
corrections, since those emerge naturally in the numerical solution. Our model is similar to others, applied
for phenomena such as plasmon–QE strong coupling [54], plasmon-assisted FRET [55], near-field exciton
harvesting [56] and energy transfer in nanocrystals [57]. We employ this modelling scheme also to test our
2D analytical calculations for the NPoM cavity. In this case, the relationship between the polarizability and
the permittivity of the distorting QE is 4ω

3πcαE(ω) = 2πε0a2 εeff(ω)−1
εeff(ω)+1 , where 4ω

3πc is the value of the ratio
between 2D and 3D Ψ0 factors, needed for dimensionality correctness. In this case, the effective permittivity
has the form εeff(ω) = 1+η2D(ω)

1−η2D(ω) with η2D(ω) = 4ω
3πc

αE(ω)
2πε0a2 .

3. Emitter distortion of Purcell factor: NPoM case

We use the formalism above to study the Purcell factor experienced by the emitter μ in a NPoM cavity
hosting the emitter μE. The system is characterised by the following geometrical parameters: D, diameter of
the particle, δ, gap size between the particle and the mirror plane, and the positions of the probing and
distorting QEs, r and rE, respectively.

Figure 2(a) shows the variety of effects that the presence of the distorting QE in the vicinity of the
NPoM cavity can produce in the near-field emission spectrum (mainly into non-radiative channels) of the
probing one. The inset presents a sketch of the cavity and the emitters. Black to grey dotted lines
corresponds to normalized LDOS spectra for an emitter in different cavities (D = 35 nm and increasing δ,
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Figure 2. LDOS distortion in NPoM. (a) Normalized LDOS spectra for NPoM cavities with D = 35 nm and different gap sizes
(δ ∈ [1, 4] nm from dark blue to yellow) for a vertical QE at the gap centre. Black to grey dotted lines represent Pf

I(ω). Blue to
yellow lines show Pf

II(ω), corresponding to the distorted spectra due to a QE, displaced 0.5 nm horizontally from the probing
one. (b) Pf

II(ω)/Pf
I(ω) for D = 35 nm and δ = 1 nm. The blue solid line corresponds to full electrodynamic calculations and the

red dotted one is the scattering theory calculation in the quasistatic limit. (c) Red and blue solid lines plot the real and imaginary
parts of the polarizability αE(ω) for the case ωE = 2.25 eV. Dashed lines show the same components of α̃E(ω), corrected due to
the depolarization field induced in the cavity.

from 1 to 4 nm in 1 nm steps), placed at the centre of the gap and oriented along the vertical direction. The
LDOS of the bare cavity is composed by a set of plasmonic modes characterized by their azymuthal order n
and their frequency ωn, analysed in detail in reference [23]. The lowest energy peak corresponds to the
dipolar plasmon (ω1) and its contribution increases and redshifts as the gap size shrinks. Dark blue to
yellow lines represent the Purcell spectra for the same cavities but considering the hybrid scenario, with the
presence of μE at a horizontal distance |d| = 0.5 nm. The distorting QE is vertically oriented and
characterized by the same parameters as in figure 1(b) with ωE = ω1, i.e. it is always at resonance with the
lowest plasmon mode. For small gaps, comparable to those realized experimentally to achieve
plasmon–exciton strong coupling, the presence of μE causes a clear dip in the spectra. As the gap size
increases, the dip disappears and the μE causes both an enhancement and blueshifting with respect to the
bare cavity LDOS maximum at ω1. This result demonstrates that the presence of more than one emitter
interacting with gap plasmons can enrich the light–matter coupling phenomenology, effectively increasing
or decreasing the LDOS depending on the cavity configuration. As explained in section 2.2, we performed
numerical calculations by using COMSOL Multiphysics in order to check these results. Figure 2(b) shows
the distorted LDOS normalized to the bare cavity one, equivalent to the ratio Pf

II(ω)/Pf
I(ω) between the

Purcell factors for the hybrid cavity-QE and bare cavity systems for the case δ = 1 nm. Blue solid line
corresponds to the numerical calculation and red dotted one to our scattering theory approach. They are in
almost perfect agreement. Figure 2(c) plots both real and imaginary parts of αE(ω) in solid blue and red,
respectively. Dashed lines display α̃E(ω) for δ = 1 nm when considering the correction
1 + βI(rE, rE,ωE)Im{αE(ωE)}. In this configuration, the radiative correction is the strongest, but the
polarizability keeps its Lorentzian functional form (see section 4). It is clear that the action of the
depolarization field is relevant in the nanometric gaps in figure 2(b).

The analytical character of the our approach permits us to explore the full set of parameters that define
the LDOS. Inspired by the experimental setups in which plasmon–emitter strong coupling has been
reported [35, 36], we focus on cavity configurations where the probing QE is placed at the gap centre. In
figure 3, we explore NPoMs (D = 35 nm and δ = 1.5 nm) in which the distorting QE is around this
symmetric position. It presents an exhaustive scan of the effects of the distorting emitter on the Purcell
factor. As in figure 2, we centre our attention on the case ωE = ω1 and both μ and μE oriented along the
vertical direction. The solid blue-to-yellow lines in figure 3(a) represent the different Purcell spectra Pf

II(ω)
as μE is displaced horizontally (see the relative positions in the inset) while black line corresponds to Pf

I(ω).
The dip produced by the emitter changes its character (from asymmetric to symmetric) and finally
disappears as the QE–QE separation increases. The interplay between the free-space (dominant for the
smallest separations) and plasmonic contribution to GI(rE, r,ω) provides the difference in the spectral
features. When both emitters are far from each other (not shown here), μE becomes decoupled from the
cavity fields and GI(rE, r,ω) is negligible.
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Figure 3. LDOS dependence on the QEs relative position. (a) Normalized LDOS dependence on the separation, |d|, between the
emitters. Blue to yellow lines show Pf

II(ω) for μE displaced horizontally (see inset). (b) Normalized LDOS dependence on the
orientation of the relative position d between the QEs for a fixed separation |d| = 0.5 nm. Black dotted line plots the bare cavity
spectrum. (c) Weighted difference (Pf

II(ω) − Pf
I(ω))/Pf

I(ω) as a function of both ω and ωE for the case where the distorting QE is
displaced |d| = 0.5 nm horizontally. (Darkest blue point in insets (a) and (b)). Grey solid line sets ω = ωE. (NPoM with
D = 35 nm and δ = 1.5 nm).

Figure 3(b) shows how the LDOS is modified depending on the orientation of the relative position
vector d (|d| = 0.5 nm) with n̂μ = n̂E = n̂z. We consider five different orientations, with angular steps of
π/8. As in figure 3(a), the colour code relates each spectrum with the distorting QE position in the inset.
The apparent differences in the Purcell spectra originate from the spatial dependence of GI(rE, r,ω) across
the gap. While the vertical component of the plasmonic field at ω1 is mainly uniform within the gap, the
free-space contribution changes its sign around its centre. This gives rise to LDOS maxima at the low and
high frequency sides of the bare cavity resonance, for horizontal and vertical QE–QE relative positions,
respectively. In between these two configurations, around the position of the distorting QE that vanishes the
free-space contribution to GI(rE, r,ω), a symmetric dip emerges in the spectrum. Figure 3(c) analyzes the
dependence of the Purcell factor on both ω and ωE in terms of the weighted difference
(Pf

II(ω) − Pf
I(ω))/Pf

I(ω) for the horizontal configuration with |d| = 0.5 nm (see dark markers in panels
(a) and (b)). This magnitude quantifies the effect of the distorting QE beyond the dipolar plasmon and
within a broader frequency window. This map shows clearly that the distorting QE affects significantly the
Purcell factor even when it is not at resonance with any plasmonic mode of the cavity. Differences between
distorted and bare cavity LDOS are apparent at all frequencies, mainly, but not only, when the natural
frequencies of both QEs overlap (ω = ωE, grey line). Furthermore, as already commented above, the
distorting QE can induce an increase or decrease in the Purcell factor depending on the system
configuration.

4. Spectral density and mode decomposition

In order to elucidate the nature of the changes induced by the distorting QE into the cavity LDOS, we focus
next into disentangling the different modal contributions to the spectral density, JII(ω). This magnitude
encodes the interaction strength between the probing QE and its EM environment. It can be written in
terms of the Purcell factor Pf

i(ω) as JI(ω) = γ0
2π Pf

I(ω), where γ0 = ω3μ2/(3πε0�c3) is the decay rate of the
probing QE in free-space. The Drude-like form of the metal permittivity and the high-quality resonator
approximation allow us to express the Dyadic Green’s function for the bare cavity as

GI(r, r′,ω) = G0(r, r′,ω) +
∑

n

Gn(r, r′)Ln(ω), (2)

where the first term is the free-space Dyadic Green’s function. The second (scattering) one is decomposed
into complex Lorentzian functions, Ln(ω) = 1

(ωn−iγm/2)−ω
, centred at ωn, the resonant frequency of plasmon
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mode n, and whose width is given by the metal damping frequency, γm [23]. Gn(r, r′)is the light–matter
coupling tensor that weights the contribution of mode n and contains all the spatial information on the
modal fields. Crucially, this term is mainly real. Thus, in bare nanocavities, where the second term in
equation (2) dominates, the spectral density acquires the form of a sum of perfectly symmetric Lorentzian

profiles, JI(ω) =
∑

n
g2

n
π

γm/2
(ω−ωn)2+γ2

m/4
with g2

n ∝ n̂μGn(r, r,ω)n̂μ [23].

By introducing equation (2) into equation (1), we can obtain the spectral density experienced by the
probing QE in the distorted cavity as JII(ω) = γ0

2π Pf
II = JI(ω) + JI−II(ω), where the second term accounts for

the effect of the second QE in the bare cavity LDOS. In general, (see appendix A for details) we can write

JI−II(ω) =
1

π
Im

{∑
n

χ1,nLn(ω) +
∑

n

χ2,n(Ln(ω))2 + χELE(ω)

}
. (3)

Equation (3) shows clearly that JII(ω) does not have the same spectral form as JI(ω). The presence of μE in
the bare cavity modifies the spectral density through three different physical mechanisms. Firstly, it alters
the original plasmonic coupling strength constants, g2

n , which are no longer real. Second, it induces
modal-like plasmon interactions, yielding quadratic, (Ln(ω))2, terms in the LDOS. Finally, the polarizability
lineshape of the distorting QE, LE(ω), also emerges naturally in the spectral density, as it does in the
free-space configuration in figure 1(b). In the following section, we investigate how these different effects
contribute to the results presented in figures 2 and 3 for a NPoM geometry.

4.1. NPoM cavity
Figures 4(a) and (b) show the different contributions to JII(ω) at the gap centre of a NPoM cavity with
D = 35 nm and δ = 1.5 nm (red lines). The distorting QE is displaced 0.5 nm horizontally (a) and
vertically (b) from the probing one. The dipole moment of both emitters is oriented vertically. The spectral
parameters are the same as in figure 3. The black line plots the spectrum for the bare cavity, JI(ω). The
components of JI−II(ω) (cyan line) in equation (3) are plotted in dotted lines. The quadratic plasmonic
Lorentzian contribution presents the same symmetric Lorentzian-like profile in both panels (orange). On
the contrary, the terms altering the coupling strength of the bare cavity (blue) and the QE polarizability
(green) are clearly asymmetric. This allows us to anticipate complex χ1,n and χE amplitudes, as the
asymmetries originate from the real part of the complex Lorentzian functions in equation (3). Note as well
that these two mechanisms oppose each other in both panels, and present maxima (minima) that are
slightly redshifted (blueshifted) with respect to ω = ω1. This gives rise to the qualitative differences in the
asymmetry of JII(ω) in both panels.

To explore the spatial dependence of the three contributions in JI−II(ω), we plot in figures 4(c) and (d)
the real (solid lines) and imaginary (dashed lines) parts of their weights. χ1,1 and χE are normalized to g2

1 ,
the coupling strength for the bare cavity, while χ2,1 (note its different dimensionality), is normalized to
γmg2

1 . Similarly to figure 2(b), these amplitudes are evaluated at a fixed distance, |d| = 0.5 nm, and different
QE–QE relative position orientations in figure 3(c), from vertical (θ = 0) to horizontal (θ = π/2)
alignments. We can observe that the real parts are rather insensitive to the orientation of d within the gap.
As anticipated, χ2,1 is isotropic and purely imaginary, as a consequence of the uniform character of the
resonant near-fields for the underlying capacitor-like plasmonic mode. Moreover, it is smaller than g2

1 even
at distances significantly shorter than the gap size (|d| = δ/3). On the contrary, uniform resonant
plasmonic fields, inhomogeneous off-resonant modes and dipole-like free-space field components
contribute to Im{χ1,1} and Im{χE}. These are much larger and flip sign with θ, which gives rise to the
qualitative differences in JII(ω) shown in figures 3(a) and (b). Both χ1,1 and χE involve products between
the plasmonic fields and free-space components (see appendix A). The latter are the origin of the change of
sign in the imaginary part of the amplitudes whereas the former provide an almost constant background,
slightly stronger for θ ≈ 0 due to the interplay of bright and dark modes in the cavity. Finally, figure 4(d)
renders the three amplitudes as a function of the QE–QE distance for θ = π/2. Both real and imaginary
parts decay with increasing |d|, although the latter does so much faster. As a result, at 2–3 nm distances the
three terms in equation (3) acquire a purely symmetric Lorentzian spectral shape. The negative sign of
Im{χE} (the largest contribution) translates into a symmetric dip superimposed on JI(ω), accounting for
the optical absorption by the distorting QE.

4.2. Bow-tie-like antenna
To show the general character and validity of our analysis, we apply the Green’s function scattering
formalism to a full three dimensional system. The cavity of choice is sketched in figure 5(a). It is composed
by two free-standing metallic (same Drude permittivity as before) rounded cones with 15 nm diameter and
15 nm height. One of the cones is oriented vertically (z-axis), the other horizontally (y-axis), in a
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Figure 4. Modal decomposition of J(ω) at the gap centre of a distorted NPoM cavity (D = 35 nm, δ = 1.5 nm) around ω = ω1.
(a) and (b) Bare and distorted spectral densities (solid lines) for vertical and horizontal QE–QE displacement (|d| = 0.5 nm),
respectively (both QEs are oriented vertically). Dotted lines plot the different contributions in JI−II(ω). (c) Modal weights of the
different contributions in equation (3) versus the orientation of the QE–QE relative position (θ = 0 corresponds to the vertical
configuration). (d) Same as panel (c) but versus distance |d| for the horizontal case (θ = π/2). In panels (c) and (d), solid
(dashed) lines correspond to the real (imaginary) the part of the modal amplitudes, normalized to g2

1 for the bare cavity.

bow-tie-like arrangement. Again, the dipole momenta of both QEs are oriented vertically. The probing
emitter is placed 1 nm away from the vertices of both cones. The distorting one is displaced |d| = 2 nm
away along the positive z-direction. The Dyadic Green’s functions of the bare structure, the only input
required for the calculation of JII(ω) in our approach, are computed by means of numerical simulations
performed using the finite-element solver of Maxwell’s equations in COMSOL Multiphysics.

Figure 5(b) shows the Green’s tensor components involved in the second term of equation (1), the real
and imaginary parts of n̂zGI(r, rE,ω)n̂z are plotted in dashed and solid blue lines, respectively. The green
solid line renders Im{n̂zGI(rE, rE,ω)n̂z}, which yields the depolarization correction to the free-space
polarizability of the distorting QE. By direct inspection, several symmetric Lorentzian contributions can be
identified in the imaginary spectra of figure 5(b), whereas a free-space background is apparent in
Re{n̂zGI(r, rE,ω)n̂z}. Both Green’s functions were fitted using the form of equation (2), with the need of
only five plasmonic modes. This fitting allows us to obtain JI−II(ω0) and identify the contribution of the
three terms in equation (3). Figure 5(c) shows the comparison between Im{α̃E(ω)} (dark) and Im{αE(ω)}
(bright) for ωE = 2.20 (red) and 2.45 eV (blue).

Figures 5(d) and (e) show spectral densities for two distorting QE frequencies, ωE = 2.20 and 2.45 eV,
respectively. In each panel, the bare cavity spectrum, JI(ω), is presented in black solid lines. It is calculated
from Im{n̂zGI(r, r,ω)n̂z}, obtained from full electrodynamic solutions for Maxwell’s equations. The
different contributions to JI−II(ω) are plotted by coloured dotted lines, and JII(ω) is shown in red solid line.
For comparison, JII(ω) computed by means of COMSOL Multiphysics in which simulations modelling the
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Figure 5. J(ω) distortion in a bow-tie cavity. (a) Sketch of the cavity formed by two rounded cones (15 nm height and diameter)
and the position of the probing (red) and distorting (blue) QEs (both are oriented along z-direction). (b) Dyadic Green’s
function components involved in the calculation of JI−II(ω) in equation (3). (c) Imaginary part of αE(ω) (bright) and α̃E(ω)
(dark) of QEs with ωE = 2.20 (red) and 2.45 eV (blue). (d) Spectral density decomposition for ωE = 2.20 eV. Solid lines
correspond to JI(ω) (black) and JII(ω) (red), and dotted lines show the three contributions to JI−II(ω). Dashed light grey line sets
the spectra obtained from numerical simulations using an effective permittivity modelling of the distorting QE. (e) Same as
panel (d) but for ωE = 2.45 eV.

distorting QE as dielectric sphere of permittivity εeff (ω) (see section 2.2) are rendered in light grey dashed
line. We can observe that they are in very good agreement with the prediction from our approach. In both
panels, the absorption lineshape of the distorting QE is clearly imprinted in the cavity LDOS. Therefore,
and as expected for |d| = 2 nm in figure 3(d), LE(ω), with (mainly) real χE, dominates JI−II(ωE). However,
Ln(ω) (blue) and (Ln(ω))2 (orange) are not negligible either. Both yield asymmetric profiles with maxima
and minima not (only) at the QE natural frequency, but in the vicinity the resonant plasmonic frequencies,
ω1 = 2.25 eV and ω4 = 2.56 eV. Remarkably, panel (d) reveals that the coupling of the probing QE to this
mode is significantly reduced by the distorting QE despite their considerable detuning, ω4 − ωE � γm, γE.

4.3. Hamiltonian picture
In order to gain insight into equation (3) and the physical interpretation of the three terms contributing to
JI−II(ω), we revisit here the hybrid QE-cavity system under a quantum description. This could be done
taking into account the full richness of the plasmonic spectrum of the bare cavity, but, for simplicity, we will
focus here on its single-mode version. The Hamiltonian for this simplified system reads

Ĥ = Ĥσ + Ĥcav + Ĥint

=
(
ωσ̂†σ̂

)
+
(
ωnâ†nân + ωEb̂†b̂ + gn,Eâ†nb̂ + h.c.

)
+
(
gnâ†nσ̂ + h.c.

)
, (4)

where the first, second and third terms correspond to the probing QE (modelled as a two-level system), its
photonic environment (which involves the plasmon resonance, labelled as n, and the distorting QE) and
their interaction, respectively. Thus, ân, σ̂, and b̂ are the annihilation operators for the cavity mode and the
two QEs. Note that the distorting emitter has been bosonized, in agreement with our scattering theory
description, in which it is treated as part of the LDOS. The plasmon mode is coupled to both QEs, with
strengths gn and gn,E, but the emitters are not interacting with each other.

Recently, a general approach has been proposed that sets the link between the Hamiltonian describing
the interaction between a single QE and its photonic environment and the spectral density for the system,
J(ω) [26, 58]. This framework, based on Fano diagonalization theory [59], is valid for Hamiltonians
involving interacting modes, like equation (4). Applying this formalism to our system, we can obtain the
spectral density for our system from the resolvent of the non-Hermitian Hamiltonian for the photonic

environment, Ĥ ′
env = Ĥenv − i γm

2 â†nân − i γE
2 b̂†b̂ (see appendix B).
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In the regime of weak interaction between cavity and distorting QE (gn,E � ωn,ωE), in which
equation (1) is valid, we obtain an spectral density in which the effect of the distorting QE acquires exactly
the same for as JI−II(ω) in equation (3). Thus, we can now express the modal amplitudes in this expression
in terms of the parameters of the Hamiltonian in equation (5) as

χE = −χ1,n =
g2

ng2
n,E

(ω̃E − ω̃n)2
, χ2,n =

g2
ng2

n,E

ω̃E − ω̃n
, (5)

where ω̃n = ωn − iγm/2 and ω̃E = ωE − iγE/2 are the complex cavity and QE frequencies that emerge

naturally in Ĥ ′
env.

Equation (5) shed light into the results presented above for distorted NPoM and bow-tie cavities. Firstly,
they show that all modal amplitudes are proportional to g2

ng2
n,E, the square of the product of the

plasmon–QE coupling constants. More importantly, they are complex, in general. As we already discussed,
this yields a non-vanishing contribution of the real part of the complex Lorentzian functions in
equation (3) to the LDOS of distorted cavities. Particularly, when plasmon resonance and QE natural
frequency are at resonance, ωn = ωE, Re{χ2,1} = 0, which explains the imaginary character of this
amplitude in figures 3(c) and (d) for all relative QE–QE positions. Furthermore, as predicted by
equation (5), both the real and imaginary parts of χ1,1 and χE are, despite minor deviations, opposite in
sign in these two panels. Finally, these single-mode amplitudes also help us interpret the findings in figure 5.
Note that the plasmonic mode components to the various JI−II(ω) contributions cannot be disentangled in
this case. However, focussing only on the distorting QE spectra, we can observe that it presents a slight
asymmetry in panel (d), where the QE is close to resonance with the cavity mode at 2.22 eV, but it is fully
symmetric in panel (e), where the QE is further from resonance with the mode at 2.52 eV. We can link this
observation to the effect of cavity-QE detuning on χE in equation (5). Note that this is complex, with
similar real and imaginary parts if |ωn − ωE| ∼ γm/2, and becomes effectively real for |ωn − ωE| � γm/2.
Thus, we can conclude that the off-resonant character of the distorting QE in figure 5(e) is behind its fully
symmetric contribution to the LDOS.

5. Conclusions

To conclude, we have presented an insightful approach based on first-order EM scattering theory to
investigate the distortion induced by a QE in the LDOS of a nanocavity. The presence of the distorting
emitter, modelled through an effective polarizability, can modify strongly the spectrum of the bare
nanostructure. We have shown that it can both enhance or suppress significantly the LDOS, even when it is
not on resonance with any EM mode of the bare system. We have focussed our attention on two plasmonic
geometries, a NPoM cavity and a bow-tie architecture. The quasistatic character of both structures enables
us to perform a complex Lorentzian decomposition of their Dyadic Green’s functions. This has allowed us
to identify and isolate three different terms (and mechanisms) in their spectral densities that encode the
emitter distortion: the modification of the bare plasmonic couplings, plasmon–plasmon interactions and
the absorption of the emitter itself. Our scattering theory is tested against full numerical simulations
accounting for the distorting emitter through an effective permittivity. Finally, we have developed a
single-mode Hamiltonian interpretation of our findings, which sheds insights into our results in terms of
well-defined parameters such as the plasmon–emitter coupling strengths and detunings. Our study reveal
that the plasmon-mediated coupling between QEs in a nanocavity effectively gives rise to non-Lorentzian
features in the density of states within the sub-wavelength regime that characterizes our system. We believe
that our work offers a new perspective on QE interactions at the nanoscale. We emphasize the relevance of
this work especially in the context of exciton transfer phenomena, quantum optical metamaterials, as well as
on picocavity design and engineering, where sub-nanometer features alter greatly the LDOS.
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Appendix A. Expressions for the χ Lorentzian coefficients

In this appendix, we provide the expressions for the different χ amplitudes that arise in the Lorentzian
decomposition of the LDOS. They can be written as:

χi =
γ0Ψ0

2 Im{̂

nμG0(r, r,ωi)
̂

nμ}
̂

nμQi
̂

nμ, (A.1)

where Qi contains the different dependences, referring to the linear term (i = 1, n), the quadratic term
(i = 2, n) and the distorting emitter contribution (i = E). For each case, Qi reads:

Q1,n =
μ2

E/�

1 + βI(rE, rE,ωE)Im{αE(ωE)}
1

ω̃E − ω̃n

⎛
⎝Gn(r, rE)T(n̂E)GT

0 (r, rE) + G0(r, rE)T(n̂E)GT
n (r, rE)

+
∑
m �=n

Gn(r, rE)T(n̂E)GT
m(r, rE) + Gm(r, rE)T(n̂E)GT

n (r, rE)

ωm − ωn
− Gn(r, rE)T(n̂E)GT

n (r, rE)

ω̃E − ω̃n

⎞
⎠ , (A.2)

Q2,n =
μ2

E/�

1 + βI(rE, rE,ωE)Im{αE(ωE)}
Gn(r, rE)T(n̂E)GT

n (r, rE)

ω̃E − ω̃n
, (A.3)

QE =
(μ2

E/�)
(

G0(r, rE)T(n̂E)GT
0 (r, rE) −

∑
nQ1,n

)
1 + βI(rE, rE,ωE)Im{αE(ωE)} , (A.4)

where we have used ω̃E = ωE − iγE/2 and ω̃n = ωn − iγm/2.

Appendix B. Exact expression for the single-mode spectral density

Here, we provide the derivation of the exact expression for J(ω) obtained from the single-mode
Hamiltonian in equation (4). To do so, we first express the non-Hermitian environment Hamiltonian as

Ĥ ′
env =

(
â† b̂†

)
H

′
(

â

b̂

)
, with H

′
=

(
ωn − iγm/2 gn,E

gn,E ωE − iγE/2

)
. (B.1)

In a similar way, we rewrite the interaction Hamiltonian as

Ĥint =
(

â† b̂†
)

gσ̂ + h.c., with g =

(
gn

0

)
. (B.2)

Let us stress that the origin of the complex frequencies in the Hamiltonian above resides in the master
equation description of the system. This includes Lindblad operators, Ln,E[ρ̂], accounting for the dissipation
experienced by the cavity (with rate γm) and the distorting QE (with rate γE), ∂t ρ̂ = i[ρ, Ĥ] + γm

2 Ln[ρ̂]
+ γE

2 LE[ρ̂]. We can now express the spectral density in terms of the resolvent matrix as [26, 58]

J(ω) =
1

π
Im

{
gT
(

H
′ − Iω

)−1
g

}
=

1

π

g2
n(ω̃E − ω)

(ω̃n − ω)(ω̃E − ω) − g2
n,E

. (B.3)

By keeping only the first-order correction in the Taylor expansion at g2
n,E = 0 of the spectral density above,

we obtain J(ω) = JI(ω) + JI−II(ω) with

JI(ω) =
1

π
g2

nLn(ω), (B.4)

and

JII(ω) =
1

π

(
g2

ng2
n,E

(ω̃E − ω̃n)2
LE(ω) − g2

ng2
n,E

(ω̃E − ω̃n)2
Ln(ω) +

g2
ng2

n,E

ω̃E − ω̃n
(Ln(ω))2

)
. (B.5)

Note that this last spectral density is the single-mode version of equation (3), which allows us to extract the
expressions for the modal amplitudes given in equation (5).
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