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Abstract: On the basis of a formal analogy with the irradiance moments, 
analytical definitions are proposed for the width of both the transverse and 
the longitudinal component of rotationally-symmetric radially-polarized 
fields at the focal plane of a high-focusing optical system. The beam width 
of the whole field is also introduced. The transverse beam size is thus 
associated with the overall spatial structure of the field. The beam-width 
definitions are applied to an illustrative example, which enables us to show 
that, at the focal plane, the power contained within a circle whose radius is 
given by the proposed beam widths represents the main part of the total 
power. 
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1. Introduction 

In nanophotonics and nanooptics, a large number of optical devices make use of highly-
focused light beams (see, for example, Ref. 1 and references therein). Applications range 
from optical data storage to confocal microscopy and particle trapping, to mention only some 
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examples. In these cases, the spatial distribution of the polarization of the incident field has 
been shown to play an essential role. More specifically, radially polarized beams can be 
particularly useful because, at their focal region, they exhibit spot sizes smaller than the 
widths shown by conventional linearly polarized fields (see, for instance, Refs. 2-4). In the 
experiments, the spot size was introduced as the area that is encircled by the contour line at 
half the maximum value of the irradiance profile. Consequently, in such framework, the beam 
width is associated with a local value of the irradiance. 

For paraxial fields, however, the concept of transverse beam size is closely related with 
the power-content ratio inside the spot radius. Accordingly, the beam size involves the overall 
spatial structure over a transverse plane, which is described by means of the so-called 
irradiance-moments formalism [5–13]. This characterization is particularly valuable in those 
cases in which the light fields show complicated and irregular spatial structures. If the 
electric-field vector of a paraxial light beam is denoted by ( , ) ( , )

x y
r E Eφ =E , r and φ being 

the planar polar coordinates, the (squared) beam width is then determined by the second-order 
irradiance moment 
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and
x y

I I I= + , the integrals being calculated over the entire transverse plane. The usefulness 

of this definition is confirmed because it is currently adopted as ISO standard. The difficulty 
arises, however, when one tries to extend this definition of beam width to highly-focused 
fields due to convergence problems of the integrals. In fact, to our knowledge, no analytical 
overall parameter has yet been proposed for representing the transverse beam size of light 
fields at the region where the power is highly concentrated. This is just the aim of the present 
work. It should be remarked that the vectorial character of light force to introduce, in a 
separate way, beam-width definitions for both the transverse and the longitudinal components 
of the field. 

The paper is organized as follows. In the next Section, we introduce the notation used in 
this work along with the analytical definition proposed for the beam width of the tranverse 
component of the field. Attention will be devoted to the important case of radially polarized 
fields impinging on a high-focusing system. The beam width of the longitudinal component is 
considered in Section 3, and the transverse size of the global beam is given in Section 4. In all 
the cases the beam width is expressed in terms of the filling factor and the angular aperture of 
the focusing optical device. Section 5 remarks a meaningful relation between power content 
and beam width. The definitions are applied to an illustrative example in Section 6, which 
analyzes depleted-center beams. Finally, the main conclusions are summarized in Section 7. 

2. Width of the transverse component of the field at the focal plane 

Let us consider a monochromatic radially polarized field at the input plane of an aplanatic 
focusing optical system. As is well known [1], the electric field vector E at the focal plane of 
the system is given by the following expression: 
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 = − 
 − 

∫ ∫E  (4) 

where A is a constant, Ei is the field amplitude (incident on the system) assumed to be 
rotationally symmetric around the propagation axis z; r and φ denote here the polar 
coordinates at the focal plane, and the angles θ and θ0 are represented in Fig. 1. In Eq. (4) the 
vector inside the integral provides the vectorial structure of a pure incident radially polarized 
field, and the value z = 0 corresponds to the focal plane where we are evaluating ( , )r φE . 

 

Fig. 1. Illustrating the notation and the geometry of the problem. The value 0θ corresponds to 

the semi-aperture angle of the aplanatic system. 

For simplicity, let us write 

 sin .ρ θ≡  (5) 

Accordingly, the transverse and longitudinal field-components at the focal plane become 
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where 0sina θ≡ takes into account the angular aperture of the focusing system. For 

convenience, in the rest of the paper the incident field amplitude Ei will be written in the form 

 ( ) ( ),
i

E hρ ρ ρ=  (7) 

where ( )h ρ denotes an arbitrary rotationally-symmetric function. 

In the present section we will investigate the transverse part of the field at the focal plane. 
Note first that Eq. (6.a) can be written in the form 
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with 
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where we have used the relation 
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Thus, the squared modulus of the transverse component (proportional to the irradiance), at the 

focal region, reads 
22 2 2 224 ( ) ,T x yE E A f rπ= + =E so that 
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On the basis of the formal analogy with the paraxial case (cf. Eq. (1)), we see that the 
width of the transverse component (symbolized by wT) is closely connected with the width of 
function f(r). If we try to apply the second-order moment definition to the width of function f, 
we would find that, in general, the integral diverges. To overcome this trouble and introduce a 
general width definition for this function, we write f(r) in the form 

 1 2( ) ( ) ( ),f r f r f r= +  (12) 

where 
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with 

 
12 4( ) ( )(1 ) .F hρ ρ ρ= −  (14) 

It should be noted that, in a preliminary work, recently reported [14], we wrote function 
f(r) in an alternative way. Here we have chosen the analytical expressions given by Eqs. (13) 
because they will be easier to use for studying the beam-width changes of the focused field at 
transverse planes around the focal region. 

In a similar way to Eq. (1), 2
T

w  can formally be defined as follows: 
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where 2
1T

w  and 2
2T

w  symbolize here the (squared) widths associated to f1 and f2, 
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Note that, to obtain Eq. (16), use of Parseval theorem has been made. From Eq. (15), we 
see that the problem of establishing an extended definition of width for this kind of highly-
focused vectorial fields reduces to defining, in a suitable way, the quantities 2

1T
w  and 2

2T
w . 

Concerning 2
2T

w , this width can easily be defined as a second-order moment, namely, 

 

2 23 2
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2 20
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w d
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∞

∂
= =

∂

∫
∫   (18) 

However, if one tries to apply the above moment definition to 2
1T

w , it can be shown that 

the integral diverges. An alternative definition should then be provided. To do this note first 
that 
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2 26 2
1
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kra

 
=   

 (19) 

As occurs, for instance, in diffraction theory, the transverse size of this function could be 
characterized by the position of the second zero of the Bessel function J2. We denote this 
value c2. Thus, we have 
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where we have used the equality 
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In summary, the (squared) width 2
T

w of the transverse field takes the analytical form 
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where 
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Two special cases should be remarked, which correspond to vanishing either f1 or f2 in Eq. 
(12): 

a) For those highly-focused fields whose function ( )F ρ equals zero at aρ = , 2
T

w  reduces 

to the well-known paraxial expression. 

b) When 
12 4( )(1 )h ρ ρ−  = constant = h0, then 0

F

ρ
∂

=
∂

, so that 2 ( ) 0f r = . Thus we obtain 

the simple expression 
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16T
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This case corresponds to an incident beam whose amplitude Ei reads 
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3. Width of the longitudinal component of the field at the focal plane 

For the sake of convenience, let us write the amplitude of the longitudinal component, 
( , )

z
E r φ , in the form (see Eq. (6.b)) 
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By applying a similar procedure to that used in the previous section with regard to the 
transverse field, we define 2

L
w  as follows: 
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where c1 denotes the first zero of the Bessel function J1, and 
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4. Global width of the whole beam 

Let us now consider the whole beam, whose irradiance is proportional to the global (squared) 

amplitude, i.e., 
22 2 2

x y zE E E= + +E . On the basis of the analogy with the second-order 

irradiance moments (see Eqs. (1-3)), we can introduce 2
G

w for the whole field in the form 
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where IT is given by Eq. (16), and 
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with
G T L

I I I= + . From the beam-width definitions introduced in the above sections for the 

field components, we finally get 
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where 0 0 0G T L
I I I= + , with 0T

I  and 0L
I  defined by Eqs. (23) and (29). 

#132225 - $15.00 USD Received 23 Jul 2010; revised 17 Aug 2010; accepted 17 Aug 2010; published 16 Sep 2010
(C) 2010 OSA 27 September 2010 / Vol. 18,  No. 20 / OPTICS EXPRESS  20822



  

5. Power-content ratio 

The validity of the proposed definitions for the beam width should be tested by evaluating the 
radius of the region (around the z-axis) where the power is concentrated. High enough values 
of the ratio 

 0

0
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,  , , ,

( )

jw

j

wj

j

I r rdr

P j T L G

I r rdr

∞
= =
∫

∫
  (33) 

would confirm the appropriateness of the analytical definitions. But before applying them to 
an illustrative example, an important remark should be pointed out by making use of the 
Tchebycheff’s inequality [15]. 

Let us consider the simple paraxial (scalar) case, and denote by I(r) and 2r< > the 
(rotationally symmetric) irradiance distribution of the beam profile and its associated second-
order moment, respectively. It follows at once 
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where R0 is an arbitrary positive number. We then have 
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Now, in order to assure that, at least, 75% of the total power is contained within a circular 
region around the z-axis, we set 
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and, therefore, 

 2
0 2 .R r≥ < >   (37) 

In other words, the radius R0 of the region that assures 75% of the total power should be twice 
the root of the second-order irradiance moment. 

Taking this into account, in the next section we adopt a formal analogy with Eq. (37), and 
the power-content ratio will be computed in the examples by integrating within a circular 
region whose radius is twice the specific beam width (transverse, longitudinal or global). In 
other words, we will calculate the ratio 
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6. Application to an example 

Let us now make use of the above analytical definitions, and consider the particular but 
illustrative case of incident depleted-center field amplitude Ei given by 
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2 2 2
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i

f
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f a
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ω
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where f0 represents the so-called filling factor, which, for this field, can be defined in the 
usual way [1], namely, 1

0 0 0( sin )f fω θ −= , f being the focal length of the focusing system. 

Figure 2 plots the irradiance distributions (with f0 = 1) of the field components and of the 
whole beam, calculated at the focal plane of the high-focusing system in terms of the radial 
distance to the z-axis (the field is rotationally symmetric). It is clear that the irradiance is 
significant for radial distances smaller than λ. 

Figure 3 shows (a proportionality factor k apart) the widths 2
T

w , 2
L

w and 2
G

w  in terms of 

the filling factor. According with the discussion of Section 5, we have computed the value 2w 
to assure a significant enough power-content ratio inside a circle whose radius is 2w (see also 
Fig. 4). It should also be noted that the three curves take the same value for a certain f0. It 
should also be noted that, although the initial beam exhibits a depleted-center behavior, the 
spatial profile of the global beam at the focal region shows a bell-shaped structure. 

Finally, Fig. 4 enables to test whether the proposed definitions for the width are physically 
consistent with the size of the region where the power is concentrated. More specifically, this 
figure provides the ratio 
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 (40) 

Note that abscises use the same scale in Figs. 3 and 4. As it should be expected, we see 
from the figure that P2w is always higher than 88% of the total power. In other words, light 
energy is mainly focused on a circular region around the z-axis whose radius is twice the 
respective beam width. It is also interesting to note the small range of variation (less than 
10%) of the power-content ratio P2w for large variations of the filling factor ( [ ]0 0.5,1.5f ∈ ). 
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Fig. 2. Irradiance (arbitrary units) at the focal plane versus the radial distance r to the 
propagation axis z (in the figures, the curves have been represented in terms of the 
dimensionless parameter kr). The figures refer to the transverse component (Fig. 2.a), the 
longitudinal component (Fig. 2.b), and the whole field (Fig. 2.c). In all the figures, the same 
scale has been used for ordinates, and the filling factor f0 has been chosen equal to 1. 

 

Fig. 3. Dimensionless parameter 2kw at the focal plane, associated with the transverse 

component (dashed line, 2
T

kw ), the longitudinal component (dotted line, 2
L

kw ), and the 

whole field (continuous line, 2
G

kw ) versus the filling factor f0. 
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Fig. 4. Power-content ratio P2w (defined by Eq. (40)) in terms of f0. Dashed line, dotted line 
and continuous line correspond, respectively, to the transverse component, longitudinal 
component and whole field. 

7. Conclusions 

Associated with the overall spatial structure of a vectorial field, the beam-width definitions 
based on the irradiance moments have been extended from the paraxial case to highly-focused 
vectorial fields. More specifically, for incident radially-polarized beams impinging on an 
aplanatic focusing system, analytical definitions have been proposed for characterizing the 
beam width of both the transverse and the longitudinal components of the field at the region 
(focal plane) where the light power is highly concentrated. From the combination of the above 
definitions, the beam width of the whole field can also be introduced. 

The power-content ratio within a circle whose radius is given by the beam width has been 
investigated by means of an illustrative example, concerning incident radially-polarized 
depleted-center fields. The results confirm the suitability of the proposed definitions to 
analytically characterize the widths associated with highly-focused fields at the focal plane. 
The evolution of the beam widths upon propagation from this plane constitutes the next step 
of this research and deserves further study in the future. 
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